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ABSTRACT

This report introduces the reader to radiation hydrodynamics
(RH) and discusses its application to fireballs in the
atmosphere. After formulating the basic equations of RH,
special attention is giveﬁ to the radiative transfer problem.
Severa‘l methods for solving the equations of transfer are
touched upon but special emphasis is placed on the two
stream method with a frequency averaging procedure, which
is specifically designed for use with finite zone sizes. A
version of the FIREBALL code which utilizes this approach is
described. The physics of fireballs is illustrated with the
example of a one kiloton detonation at sea level density and
without interference from the ground. Some remarks are made
on scaling procedures for extending the results to higher yields

and altitudes. Estimates are made of the validity of the models.
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FOREWORD

"Thermal radiation" is electromagnetic radiation emitted by matter in a
state of thermal excitation. The energy density of such radiation in an en-
closure at constant temperature is given by the well known Planck formula.
The importance of thermal radiation in physical problems increases as the
temperature is raised. At moderate temperatures (say, thousands of degrees
Kelvin) its role is primarily one of transmitting energy; whereas at high
temperatures (say, millions of degrees Kelvin) the energy density of the radi-
ation field itself becomes important as well. If thermal radiation must be
considered explicitly in a problem, the radiative properties of the matter
must be known. In the simples.t order of approximation, it can be assumed
that the matter is in thermodynamic equilibrium "locally” (a condition called
local thermodynamic equi.librium, or LTE), and all of the necessary radiative
properties can be defined, at least in principle. Of course whenever thermal
radiation must be considered, the medium which contains it inevitably has
pressure and density gradients and the treatment requires the use of hydro-
dynamics. Hydrodynamics with explicit consideration of thermal radiation is
called "radiation hydrodynamics".

In the past twenty years or so, many radiation hydrodynamic problems
involving air have been studied. In this work a great deal of effort has gone
into calculations of the equilibrium properties of air. Both thermodynamic
and radiative properties have been calculated. It has been generally believed
that the basic theory is well enough understood that such calculations yield
valid results, and the limited experimental checks which are possible seem to
support this hypothesis. The advantage of having sets of tables which are
entirely calculated is evident: the calculated quantities are self-consistent
on the basis of some set of assumptions, and they can later be improved if

calculational techniques are improved, or if better assumptions can be made.
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The origin of this set of books was in the desire of a number of persons
interested in the radiation hydrodynamics of air to have a good source of
reliable information on basic air properties, A series of books dealing with
both theoretical and practical aspects was envisaged. As the series materialized,
it was thought appropriate to devote the first three volumes to the equilibrium
properties of air, They are:

The Equilibrium Thermodynamic Properties of Air,
by F. R. Gilmore

The Radiative Properties of Heated Air,
by B. H. Armstrong and R. W. Nicholls

Tables of Radiative Properties of Air,
by Lockheed Staff

The first volume contains a set of tables along with a detailed discussion of the
basic models and techniques used for their computation. Because of the size of
the related radiative tables and text, two volumes were considered necessary.
The first contains the text, and the second the tables. It is hoped that these
volumes will be widely useful, but because of the emphalsis on very high tempera-
tures it is clear that they will be most attractive to those concerned with nuclear
weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long known to be important and at
present in a state of rapid growth, is not as easy to assess as are equilibrium
properties. Severe limitations had to be placed on choice of material. The
fourth volume is devoted to general aspects of this topic. It is:"

Excitation and Non Equilibrium Phenomena in Air,
by Landshoff, et al.

It provides material on the more important processes involved in the excitation

of air, criteria for the validity of LTE and special radiative effects.
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A discussion of radiation hydrodynamics was felt to be necessary and
the fifth volume which deals with this topic is:

Radiation Hydrodynamics of High Temperature Air,
by Landshoff, Hillendahl, et al.

It reviews the basic theory of radiation hydrodynamics and discusses the
apblication to fireballs in the atmosphere.

The choice of material for these last two volumes was.made with an eye
to the needs of the principal u‘sers of the other three volumes.

Most of the work on which these volumes are based was supported by the
United States Government through various agencies of the Defense Department
and the Atomic Energy Commission. The actual preparation of the volumes
was largely supported by the Defense Atomic Support Agency.

We are indebted to many authors and organizations for assistance and we
gratefully\ acknowledge their cooperation. We are particularly grateful to the
RAND Corporation for permission to use works of F. R, Gilmore and H. L. Brode
and to the IBM Corporation for permission to use some of the work of
B. H. Armstrong, Most of the other authors are employed by the Lockheed
Missiles and Space; Company, in some cases as consulfants.

Finally, we would like to acknowledge the key role of Dr. R. E. Meyverott
of LMSC in all of fhis effort, from the initial conception to its realization.

We are particularly grateful to him for his constant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of
these books. We understand that much remains to be done in this field, and
we hope that the efforts represented by this work will be a stimulus to its
development.

The Editors

J. L. Magee
H. Aroeste
R. K. M. Landshoff



Preface

This volume reviews the basic theory of radiation hydrodynamics and
discusses the application to fireballs in the atmosphere. The first chapter
starts with a formulation of the basic equaltions and goes on to discuss
schemes for translating these impossibly difficult equations into manageable
computing procedures. As a companion to this chapter we have added ‘
Appendix A with a version of Hillendahl's FIREBALL code, which runs without
inputs of a classified nature.

Chapter 2 deals with the .physics of fireballs. The main discussion is
devoted to the description of a one kiloton detonation at sea level. That
section has nearly all been written by H. L. Brode of the RAND Corporation
but a few passages have been added by the editor. OCne of these deals with
opaque précursors to shocks ‘whosevsignificance to the thermal output was
noted by Hillendahl since the original version was written, The section on
other yield and altitudes was also written by the editor.

The summary chapter examines the reliability of the results an_d how
this is affected by approximations, incomplete basic information and other
deficiencies in the present state of the art.

I would like to thank Dr. H. L. Brode for his contribution and the

RAND Corporation for permission to include his work in this volume.

R. K. M. Landshoff
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Chapter 1. RADIATION HYDRODYNAMICS

1.1 Introduction

A nuclear detonation deposits a large amount of heat energy in the
air around it. The heating phase is of relatively short duration since the
energy arrives in the form of X-rays which come either directly from the
surface of the exploding bomb or from the shock heated air in the immediate
vicinity of that surface.

Following the X-ray deposition the air approaches local thermodynamic
equilibrium (LTE). The method of calculating the subsequent explosion
history which 1is discussed in this chapter ignores this period where the
air relaxes to LTE. Before we proceed we take a short look at the validity
of that assumption.

The kinetics of relaxation pro‘cesses has been discussed in Chapter 6, (4)* .
The relaxat\ion time depends on the ambient air density and on the final
temperature as shown in Fig. 6.1 (4).

For a detonation at sea level practically all the energy deposited
by X-rays gets stuck in a relatively small volume and raises the temperature
to very high values. Under these conditions relaxation times are very
short. For a detonation at a high altitude a sizeable fraction of the X-ray
energy 1s deposited at large distances and produces a lesser temperature
rise because of the inverse square drop of the flux density. The lower
alr density and the lower temperature both contribute to increase the

relaxation time.

DASA-1917-4, from now on referred to as (4).



As an example, let ué consider a detonation with an X-ray yield of
lO20 ergs radiating like a blackbody with a temperature of 107 K occurring
at an altitude somewhat below 50 km where the air density is 10_3 times
less than at sea level. A crude estimate, using the asymptotic theory of
Section 4.4, (4) shows that about 10% of the X-ray energy is deposited at
distances more than about 80 m where it produces temperatures less than
12,00001(. In Fig. 6.1 (4) one reads off that the relaxation time at that
temperature and a density F_JL = 10_3 is 10_6 sec. Within that sphere
it takes less time and on the ?)utside more time to relax the air to its
equilibrium temperature. Thus 1_‘0% of the energy relaxes at a relatively
slow rate and the assumption that one can ignore the relaxation period
is not entirely justified in that case.

The éssumption of LTE is essential to the classical formulation of
hydrodynamics. It means that the temperature is a well defined property
of the fluld and that pressure and internal energy are known functions of
density and temperature. Without LTE it would be much more difficult to
formulate the conservation theorems for momentum and energy.

In the theory of radiative transfer (Chapter 2, (2)*, which together
with hydrodynamics accounts for the expansion of fireballs, LTE also is
an assumption of major importance. Without it a quantitative prediction
of the interaction between matter and radiation would be a hopelessly
- complicated problem.

Despite the very important role played by radiative transport

radiation does not as a rule account for a significant fraction of the energy

density and the pressure within a fireball. Even for blackbody radiation,

*
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which is not present unless the gas is opaque, this contribution is small
unless the temperature exceeds values like 25 eV. Temperatures of that
magnitude are only maintalned during the very early stages of fireball
histories. In this period the fireball cools down by radiative expansion
and ‘this goes soO fast that there is essentially no hydrodynamical motion.
In formulating the hydrodynamic equations one can therefore ignore the
energy density and pressure of radlation because by the time they get
into the act they are indeed negligible.

During the early period of fireball expansion fwhere radiative tfansfer
of energy is important) the shape generally appears to be almost spherical,
at least at low altitudes where the size is small compared to the scale
height of the atmosphere. Asymmetries which are hidden by the opaque
outer layers may possibly occur due to instabilities at the bomb air interface,
but we shall ignore these. Not much is known about such phenomena in
any case and adding the complication of asymmetry would compromise the
already complicated problem of treating radiation flow. In line with the
current state-of-the-art we shall therefore discuss only spherically symmetfical

problems.

1.2 Basic equations of radiation hydrodynamics

The differential equations for calculating fireball histories are the con-
servation relations of ordinary hydrodynamics but with a rather complicated heating
term in the energy equation. They can be written in either Eulerian or Lagrangian
form. The two forms are characterized by a different choice ofindependent space

variables. In the Eulerian system these are the coordinates in real spaceandinthe



Lagranglan one they are coordinates which are tied to the particles

of the fluid. In the Lagrangian system the coordinates in real space
which describe the position of a specified particle are used as dependent
variables. In the Eulerian system this is manifestly impossible and the
motion Is described in terms of the fluid velocity.

The other dependent variables which characterize the thermodynamic
state of the fluld are the same in the two systems and can be chosen from
a set which includes the density o or its reciprocal the specific volume
V , the pressure p , the temperature T , the Internal energy E , etc.
It may be convenient to keep seyeral of thgase variables in the equations
but one must keep in mind that they are interrelated and that the thermodynamic
state is specified by any two of them.

The Lagrangian method is especially useful in problems with a high
degree of symmetry where one neéds only one coordinate to specify the
poéition. Having restricted ourselves to spherically symmetrical problems
we shall therefore adopt the Lagrangian approach.

We define the Lagrangian radius r of a given particle as its radius
at time zero, i.e. before it has started to move. The actual radius of the
particle at any time Is denoted by the capital letter R . The hydrodynamic
problem is to find R(r,t) .

If stands for the initial density the specific volume at any

Po

instant is

2
v=_L (5> 3R (conservation of mass) {1.2-1)



Introducing the velocity

u=2R (1.2-2)

2
d3u _ _ _1 (RY 3p -
3t o (r) 3T (conservation of momentum) (1.2-3)
%tﬁ + p gTV = V Q - (conservation of energy) (1.2-4)

where the rate of heating per unit volume Q still needs to be worked out.
As it stands the energy equation has a serious defect because it does
not allow for the entropy raise produced by a shock. To get around this

we adopt the method of Von Neumann and Richtmyer (1950) and add a pseudo-

viscous pressure

Wi (du/ar) i1f g—% <0
q= (1.2-5)
au
0 if T > 0

“to the regular pressure in Egs. (1.2-3) and (1.2-4). The constant 4 has
the dimensions of a length; it will be further specified when we go to
finite difference equations.
The radiative heating rate Q at some polint is the difference between

absorbed and emitted power per unit volume

Q =ﬂ u'y (I, - B) dvdn (1.2-6)
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The emitted power presents no problem because the blackbody intensity
Bv is a known function of temperature. There is no angular dependence
and the integral over frequency can be expressed in terms of the Planck
mean, Eq. (2.4-15), (2). One obtains:
& =431 ot (1.2-7)
em p
where o 1is the Stefan Boltzmann constaﬁt.

The absorbed power is much more difficult to evaluate because the
calculation of the intensity Iv‘ is a major task. To carry this out one should
in principle solve the equation of transfer (Eq. (1.3-1)} along every ray
passing through the point in question and for all values of the frequency.

One of the major difficulties of such a program arises from the fact that

the optical'properties of air in a large part of the relevant temperature range
result mainly from transitions between molecular levels. The spectrum
associated with the major band systems consists of an eﬁormous number of
lines and the absorption coefficient fluctuates from large values at the

line centers to small ones between the lines. Because of these "windows"
the radiation at some point generally comes from points along the ray which
are an appreciable distance further back. This distance varies just as
strongly with frequency as uv' itself and it is therefore not proper to use
local averages of u\;' in a frequency interval contalning, say, a few lines.
Instead, it is in principle necessary to integrate the transport equation at

a large enough number of frequencies within every one of these intervals.

This correct approach clearly demands an impossible amount of computational



effort which has to be avolded. There are two limiting situations where
this can be readily done. The one situation arises fcr a transparent medium
where the optical depth uV'L (L being the size of the radiating region)
is uniformly small compared to unity. In that case I\) is very much smaller
than Bv and one can neglect the absorption altogether. In that case we
have Q = - Qem which we know from Eq. (1.2-7).

In the opposite extreme of an opaque region for which uV'L >> 1
one can simplify Eq. (1.2-6) directly. The heating rate can in that case

*
be expressed in the farm

O = - 9v-F (1.2-8)

(1.2-9)

Tables and graphs of the Rosseland mean free path >‘R .or the related opacity
can be found in (3)**, p. 12, pp. 446 to 449 and pp. 622 to 625,
The above method of treating radiative transfer was originally
developed by Eddington nearly half a century ago. In its application it
was however, limited to astrophysical problems where it was not coupled
to hydrodynamics. An early discussion of the use of this so-called diffusion

approximation to radiation hydrodynamics has been given by Magee and

Hirschfelder (1953). The first calculations carried out with this method

to appear in the open literature were presented by Marshak (1958).

The operator V is defined in Eulerian space. In plane or spherical
geometry it 1s well known how to express 1t in Lagranglan form.

. .
DASA 1917-3.



1,3 Average absorption coefficients

In the temperature range where molecular transitions occur and
where optical depths are neither uniformly small nor uniformly large one
has to resort to approximation schemes. It is clearly necessary to apply
some kind of frequency averaging which will do a fair amount of violence
to the "correct approach” of solving the transfer equation for a few million
values of the frequency. The basic mathematical problem is that one wants
to average the product uv' I\a which enters in Eq. (1.2-6) as well as in

*
the transport equation

ds uv' (Bv - Iv) (1.3-1)

by equating the average of the product and the product of the averages, i.e.

one wants fo replace uv' I\) by uv' ? and that is of course not correct.
The quality of this approxima:tion depends on the amount of fluctuation among
the values of uv' and Iv that are being averaged and in a line spectrum
this fluctuation may be quite severe. A number of averaging schemes have
been proposed and are used in various computing programs.

One scheme divides the spectrum into groups (10 to 100) whose widths
are chosen falrly narrow at the low energy end and wider as the energy goes
up. Within each interval a Rosseland type average 1s obtained. Such group
averages have been used, for example, in the SPUTTER program of AWFL as
reported in RTD-TDR-63-3128 Vol. II and in a code developed by J. Zinn

of LASL.

* -
Strictly speaking, the left hand side of this equation should contain the

81
additional term —i— —t\L but because of the large value of the light velocity
this time dependenébe is usually left out. We note further that light rays are.
straight lines in Eulerian space and in this section we temporarily abandon

the Lagrangian system,



A second method of averaging uses the average transmission function

(Eq. (2.6-12b), (2)

- - s
Tr (u'vs) = ;j e v dv (1.3-2)

and the slab absorption coefficient related to it by Eq. (2.6-19), (2)

i) = - T (1.3-3)
These averages are defined for slabs of thickness s in which the
temperature and density of the alr are uniform. The intervals Avi are
much narrower than the groups of the first mentioned method. The spacing
between intervals is 10 to 20 times as large as the Interval size. The
calculated averages depend smoothly on the frequency so that it seems
reasonable to interpolate. The slab average is made to order for use in
finite difference equations where the fluid is divided into.zones. It has
been used in a number of LMSC codes which will be discussed later in this
chapter.

A variation of the group average procedure consists of subdividing
the frequencies within a group into subgroups which are ordered according
to the magnitude of the absorption coefficient rather than by frequency.

The spread between the absorption coefficlients within each subgroup is

obviously less than between those in the entire group and subgroup averages



will therefore be more meaningful. To use subgroup averages we must also
introduce individual intensities for each subgroup. Even the use of only
two subgroups would improvethe accuracy considerably. A short-cut for
the calculation of two subgroup absorption coefficients consists of fitting
the average transmission function in the form (Eq. (2.6-46), (2).

—_ - U,S - is
Tr(uv's)=%(e "y e 7 2)

Tables of u'l and u.'2 are given by Churchill et al. (1963)., We

don't know of any code which has utilized this type of average.

1.4 Solution of the equation of transfer

Having obtained an average absorption coefficient which permits us

to replace the average product “v Iv by the product of averages E:

. *
the transfer equation becomes

-—\)- -_— - T — T
My, (Bv Iv)

The formal integration of this equation along a ray is straightforward

and leads to

T
Vv

— -, _ (r,' - 7.)
Iv(s)= e Y I\) (So) +fB\) (s) e Vv v d'rv'

O

The absorption coefficient is still meant to include the correction factor
for induced emission (Eq. (2.2-11a), (2) and the prime is left out for

convenience of writing only.

10
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s
T, = T l8) = J uids)dsy 5 1) =71 (s (1.4-3)

o

The difficulty arises because one has to determine the value of this
integral for all the rays through a given point to evaluate the rate of
absorption of radiative energy at that point. This is required for carrying
out the angular integration in Eq. (1.2-6).

There are basically two approaches to this problem. One is the brute
force approach to follow this program directly and to evaluate R)(s) along
a large number of rays. This approach has been used in the SPUTTER program
with one tangential ray through the center of each zone. Fig. 1-1 shows
how these rays are combined to obtain the varlous values of -I-v at the
center of zone 4. Of the 7 rays which are drawn 3 are redundant because
of symmetry and one obtains 3 different values of Tv going out, 3 going
in and 1 grazing the zone.

In the other approach one defines certain moments, i.e. angular
integrals of Tv which now depend only on the radius and not on the
direction. To solve for these moments one Integrates a system of coupled
linear differential eqqations which are only approximately correct but which
give exactly the right answer when one considers the limit where the
diffusion approximation applies. Such schemes have been used widely
in astrophysics and are discussed in great detall by Chandrasekhar (1960)
and Mustel (1958). Some of the more sophisticated schemes use a large
number of moments but quite good results can be obtained by restricting

that number to two and using only the outgoing and ingoing flux which
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are defined as the Integrals

F, =J. I, cos 8 d (1.4-4)

cos 8 > o

(cos 8 < o)

where 8 1s the angle between the ray and the radial direction.

We consider first the case of plane geometry where the medium
is stratified in plane parallel layers. This geometry has been studied
extensively by astrophysicists and applied to the radiative‘ equilibrium
in the outer regions of stars where 1t is indeed unneces‘sary to worry about
the curvature. By treating the radial coordinate R as if it were a
cartesian coordinate the angle 8 of a ray remains constant along the
ray path. The optical path length between two surfaces is therefore
simply the optical path length along the normal divided by |cos 8] .
We shall express this in terms of the optical depth conventionally
defined by astrophysicists as the optical path length measured radially
inward from the surface of a star (or in our case a fireball), i.e. the integral

R
s

~ = ~ 1 1 1.4~
TV(R) J uv(R) dR (1.4-5)
R
To evaluate Iv(S) as given by Eq. (1.4-2) for an outgoing ray we place

=T

So far enough inside that the factor e Voois essentlially zero; for an

ingoing ray we start at the surface where fv(so) = o0 ., The first term of

12



Eq. (1.4-2) can therefore be left out in both cases. For the exponent

under the integral one can wrilte

Fo-F
A% T\)

cos B

and for outgoing and ingoing rays one obtalns

g ) Tv —Tv
I = 1 B (R) 1 (R) e cos 8 dR' ; cos 8>0
V) |cos el \Y v
o
T ~or
[ T\) 'rv
1 cos 68

dR' ; cos g <o

fv =m { §v(R') L-lv(R') é

r

Entering thése expressions into Eq. (1.4-4) one obtains the outgoing and

the ingoing flux

.
F o4 = an‘ B,(R") &, (R") E2<|'1'V' - T\Jl) dR’
o

r
S

- ZWJ EV(R') A, (R’ Ez(l?’v' —?‘vl> dR’

r

a7
]

where

Ez('r) = f eV uT2 g
1

13
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(1.4-8b)
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A useful approximation is obtained if one replaces lcos 8[ in

Eq. (1.4~7) by an average c¢= coOs 8 . Substituting the approximate
form of I\Ji into Eq. (L.4-4) gives expressions similar to those in
Egs. (1.4-8) but the exponential integral is now replaced by a simple

exponential function, i.e. we have the approximation

1 -r1/c -
Ez(’r’) ~ 7o e (1.4-10)
The average intensitles calculated from the approximate fluxes
| Ivi=Fvi/rr (1.4-11)
satisfy the differential equations
dI
vi - = =
= <+ - -
c 3R 0, (Bv I\)_t) (1.4-12)
These average Intensities are therefore identical with the intensities in
the directions for which ]cos el = c . The idea of the two stream model
with intensities in a characteristic direction goes back to Schwarzschild
and Schuster who suggested to use c = —;— . A much better choice
s ¢= % which gives the correct net flux
4m dﬁ\)
F,-F_=- 3—5.\)— IR (1.4-13)

in the high opacity limit.
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In spherical geometry one has no simple rigorous expressions for
Iv like those given in Eqs. (1.4-7) from which to derive two stream
equations. It seems, nevertheless, reasonable that one should be able
to use equations which are essentlally of the same character but with
minor modifications to maintain conservation of energy. It is easy to

see that this 1s achleved by the pair of equations

With the definition given in Eq. (1.4-11) one obtains the outgoing and

incoming flux simply by multiplying the corresponding intensities T\)+

by a factor 1w . From the total integrated net flux

3 = I(Fv+— F,.) dv

one can finally obtain the heating rate

- 1 d 2
Q= 2 aRr (% 57)
R
for use in the energy equation.

1.5 Finite difference equations
It is obviously impossible to find exact analytical solutions to the

equations of RH and one must be satisfled with approximate numerical

(1.4-14)

(1.4-15)

(1.4-16)

solutions. To obtain these one replaces infinitesimal increments of dependent

as well as Iindependent variables by finite differences. Mathematically RH
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can be characterized as an initial value problem and the methods and problems
arlsing in treating this by means of finite difference equations have been
.thoroughly discussed by Richtmyer (1357). We shall review some general
considerations and then turn to questions which are specifically relevant
to our problem.

In a finite difference scheme continuous variables are replaced by
discrete ones but there are numerous possibilities for doing this. Thus
one can regard the discrete values of a variable as representing either
the values of the corresponding continuous variable at a set of discrete
meshpoint or the average values between meshpoints. There are other
variations but they are not needed in the following discussion. One can
treat some variables in the first and others in the second manner. To
indicate the actual choice one can use integral subscripts for variables
defined at the meshpoints and half integral ones for those defined in the
intervals. It is convenient and natural tolet R, and U

i i
the radius and the velocity of the particle at the meshpoint 1 and this

represent

leads almost automatically to defining Vi+1/2 ¢ Pyp1/0 ¢ Ei+1/2 ’

and T as the averages of specific volume, pressure, internal

1+1/2 |
energy density and temperature in the interval between the meshpoints
1 and i+l .

Another element of choice enters in the methods used for advancing
variables in time., Almost all variables are defined at meshpoints in time
which are indicated by integral superscripts. It may, however, be useful
to define the velocity between meshpéints which can be indicated by half

integral superscripts. With this definition and abbreviating the right hand

side of Eq. (1.2-3) by a (for acceleration) that equation and Eq. (1.2-2)

16



lead to the integration procedure

ghtl/2 o yn-l/2  ng, (1.5-1)

5t (1.5-2)

1 ntl

Having obtained Rn+ one can then obtain V by differencing

which follows from Eq. (1.2-1). So far we have not bothered to look at
alternate schemes because the procedures outlined above are very straight-
forward and there seems to be no good reason for doing anything more
elaborate. In fhe purely hydrodynamic case, i.e. if Q = 0 the energy
equation (1.2-4) can also be integrated very simply. Centering the

difference equation at (n+1/2) leads to

g - B+ %(p“"l + p" + zq“"l/z)(vn+1 - v“) =0 (1.5-3)

If E 1is expressed as a functionof V and p this equation can be
solved for pn'ﬂ'l . the one variable which is still unknown. Anticipating
the problems which arise when one has radiative heating it 1s really more
useful to express both E and p as functionsof V and T andto
solve Eq. (1.5-3) for Tn-‘-l . Either way one has to solve for only one
unknown at a time which causes no real difficulty even though it may have
to be done by iteration.

This situation changes drastically when the radiative heating rate Q
becomes important. The heating term to be added on the right hand side of

n+1/2

Eq. (1.5-3) should be centered at the level t like the remaining
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part of the equation but the temperature distribution from which it must
be calculated 1s only known up to the time t™ . There are two major

avenues of attack. One is to forget about centering Q and use its

value as calculated at t" . If this is done one can still solve explicitly

+
for T" 1 and this is as the explicit method of integration.

In the other attack one uses the properly centered heating rate
. + .
%(Qn L + Qn) . This means that the equation which describes the heating
+
in any one zone depends on the values of T 1 in all zones so that one

has to solve a large number of equations (one per zone) simultaneously.

This implicit method involves a considerable amount of algebraic labor.

If centering was only required for accuracy it would not be worthwhile to
go to all this trouble because one could increase the accuracy more easily
by reducing 68t . What 1s really involved is the question of mathematical
stability which we shall briefly discuss.

It 1s physically clear that a fluid responds to any pressure or temperature
disturbance by a motion or heat flow which counteracts the disturbance. In
an integration by means of difference equations which uses too large time
intervals it may happen that the disturbance is overcompensated so that an
excess tur n>s in one step into a deficit, in the next step again into an excess
etc. If the magnitude of this alternating disturbance increases each time any
small disturbance will eventually cause the solution to blow up. In principle
one can cure such an instability by taking 6t small enough but this could
seriously Increase the running time of a problem.

There are two cases where the stability condition has been obtained
analytically. The first arises when the dominant mode of energy transfer

is of a hydrodynamic nature. The maximum &8t in this case is found as
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follows. One calculates for each zone the traversal time Ati-F 1/2 =
(Ri+l-R9/Vs(i+ 1/2) of a signal traveling with the local sound speed. Going
through all intervals one then finds the smallest, say Atmin . The time
increment is then limited by the so-called Courant—-condition

8t < k At (1.5-4)

in

where k 1s a numerical factor near unity which depends on the integration
scheme., In the scheme where one uses the three equations at the beginning
of this section one has k =1 .

When radiative heating dominates,the stability analysis has been
carried out for the case where one can use the diffusion approximation. In
the explicit scheme the limit for 5t 1is proporticnal to ﬁRé RZ‘ which
decreases together with the Rosseland mean absorption coefficient of the
air. If the air is fairly transparent 06t 1is limited to very small values
and this makes an explicit calculation very costly in computer time. The
implicit method does not have this trouble and is in fact unconditionally
stable. On the other hand it is of course also time consuming to 'solve a
large number of coupled equations simultaneously. One can attempt to
approach the implicit solution by iteration. On the first go—around one
can advance T by the explicit method. With the advanced temperature

« n+ .
distribution one can then work out Qn 1 , form the average Qn+ 1/2 =

. 3 + <+
%(Qn + Qn 1) and reevaluate T 1 . This procedure can be repeated
several times and if 1t converges it will lead to a stable solution. The time

step &t 1is now limited by the condition that the solution should converge.

In contrast to the stability condition of the explicit method this limit of 6t
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is inversely proportional to QR and independent of the zone size. The
actual convergence criterion is almost equivalent with imposing a limit on
the fractional energy change per time step within every zone. That form
of the condition is easy to use and experience has shown that a fraction
like one percent ensures the convergence. In a purely implicit procedure
there 1s no such limitation on the magnitude of the time step. For the
sake of accuracy one should also impose a limit on the fractional energy
change per time step but it does not need to be as small. This limit can
be allowed to vary from zone to zone to require greater accuracy in those
zones where the changes make a significant contribution to the overall picture.

It is obvious that the allowed time interval changes throughout the
calculation. For reasons of economy one should always run fairly close to
the maximum without, however increasing &t too abruptly. To change 6§t
generally requires some interpolation (or extrapolation) and all programs
nowadays have provisions for carrying the necessary changes out automatically.
Although the preceding arguments were based on the diffusion approximation
they apply equally in the more general case. It is true that one can not
readily obtain analytic stability or convergence criteria but experience
with numerical calculations indicates the same pattern.

In addition to the varlous decisions described above one also has to make
a choice on zone sizes. There are two parts to this decision relating to the
total number of zones and to their relative sizes at different radil. Part one
involves a compromise between conflicting requirements for accuracy and economy
because it takes a large amount of computer time to use very many zones.
This is amplified if the choice of B8R also limits the time step as in

hydrodynamic calculations where 6t ~ SR and even more iIn the explicit
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calculation of radiative transfer where 6t ~ 6R2 R

Part two involves a judgment as to where the really significant
changes are taking place and it is of course at those regions where one
should use the finest zoning. In the course of a calculation the location
of significant changes moves so that one has to make provisions in the program
to detect this and to react to it by rezoning. Furthermore the overall radius
of the fireball changes during an average calculation by as much as 3 orders
of magnitude so that rezoning is also necessary to keep the number of zones
at a more or less constant level.

The pseudo viscous pressure q introduced in Eq. (1.2-5) is a device
for calculating the entropy rise behind the shock. Without the damping
mechanism provided by q the changes induced behind the shock overshoot
and produce lasting oscillations which physically do not belong there. A
large value of £ will kill these improper oscillations most effectively
but at the cost of making the transition region very wide which is also
incorrect. Experience has shown that 4 = 2AR will stop the fake
osclllations reasonably fast without spreading the shock transition over

more than about 4 zones.

One can also express q in terms of g—;’ rather than g% and
Richtmyer suggests to use the formula
(e 1) 2
=9~ (3V Vv -
q v (at '3t < 0 (1.5-5)

with

2
L = a (%) Ar - (1.5-6)



so that the transition region covers the same number of zones near the center
and further away from it. The numerical factor a should again be
approximately 2.

In differencing either Eq. (1.2-5) or {1.5-5) one is led to expressions
at half integral times. To obtain the acceleration in Eq. (1.5-1) it should
be known at t' but to achieve that, one would have to use an implicit
routine. In this case that is not worthwhile since the use of g 1is an
artifice anyway and it is customary to have q lag half a time step behind.
In the energy equation (1.5-3) q 1is automatically in step.

The total energy which 1s obtained by summing the kinetic and internal
energy within the fireball and the energy carried away by radiation should
always stay at a constant level, The internal energy should in principle
contaln a part due to radlation but as mentioned in section 1.1 this does
not amount to much. A trivial point, but one which must nevertheless be
kept in mind is, that one should only count the excess over the energy in
the ambient unheated air; otherwise the nominal energy would grow with
the volume of the fireball.

It is important to keep track of any violations of energy conservation
which may creep in through the use of finite difference schemes. Any
program should therefore contains a routine for checking energy conservation.

The point at which R.H. goes beyond standard methods comes with
the calculation of radiative transfer. The various methods require the
evaluation of certain space integrals before one can calculate the energy
deposition in a specified zone. Because of the very strong temperature
dependence of the integrands these integrals depend critically on the

radial dependence of the temperature. The common method of approximating
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this dependence by assuming constant values of the temperature within the
~ zoOnes may lead to serious errors. An attempt to correct these has been
made by Hillendahl (1964).

We shall present the analysis for the plane case which is formally
easler. The transition to spherical geometry can be made later and
requires only minor changes which are rather obvious. The starting point
is Eq. (1.4-12) but before one has carried out any frequency averaging.
Thus the line character is still preserved and uv and I\Ji are
rapidly changing functions of frequency. Integrating Eq. (1.4-12)
across the zones which are separated by the interface at Ri one finds

for the outgoing and ingoing stream (represented by the upper and lower

sign
Ty, i¥1
_3 - '
ZA\),i*“‘;‘ 3 . -%A\J,i - ! )
Iv+,i_ vi,1¥1°¢ 23 B, e T, (1.5-7
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where Bv and 'r\) are taken at the same point R , and
' -~ ~' ~ ~
A\),i- IT\),i-T\)I ’ AV'1+1/2 lTV,i—Tv,i+1| (1.5—8)
To carry out the integral we use the first two terms of the power expansion
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and obtain
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Integrating over frequency we obtain formally
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and where Bi is the integrated intensity
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at the point Ri . No limits of integration have so far been specified
and one is free to divide the spectrum into any set of frequency intervals.
As a first approximation Hillendahl used the entire spectrum without
subdiv/iding it.

Before Eq. (1.5-11) can become operational one has to define
the average optical depth T which enters in the derivative %—5 and
one has to face the difficulty of an unknown ratio Iv/I entering into
the definition of 2Z .

The procedure devised by Hillendahl for obtaining an average for
T 1is specifically intended for use with finite zone sizes. The
prescription is designed to keep the emissivity of a zone of constant
density and temperature unchanged if one replaces the frequency

dependent optical depth A?—'v = u AR by its average AT . Thus,

i1.e., by making this substitution in the exponent of Eq. (1.5-14) one

is led to
B -2, AR ~2F
A= —ABL e v dv = e
B i
We note that the factor —vB’— in Eq. (1.5~14) is taken at the edge of
i

the zone. Since this ratio varies only very slowly with T we will
take 1t at the center of the zone instead, so that there is only one
emissivity A per zone and not different ones for the ingoing and out-
golng ray. In the above integral for A one can clearly replace the
rapidly varying exponential by a smooth one in which one uses the slab

absorption coefficient [Iv as defined in Egs. (1.3-2) and (1.3-3). In
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the new expression
B -3, AR |
A= —g e dv (1.5-18)

the zone with AR enters not only as a factor in the exponent but also

as one of the variables in ﬁ\) = ﬁv(p ,T,AR) . Various methods for
calculating Jv ., which apply when the dominant absorption is molecular,
atomic or free~free, have been described in (2). The results are tabu-
lated in and have been used in the above integral to obtain Afp,T,AR) .

It is convenlent to express this in terms of a mean absorption coefficient

GH (0p,T,AR) = - %Ln A/AR and to write:
3 /-
-5 (@4 AR)
Depending on AR as wellason p and T, GH differs from the
Rosseland mean (ﬁR) and the Planck mean (JIP) which depend only on
p and T .
For the function W , which should in principle be calculated from

Eq. (1.5-15) we use an approximation and set

3 -

-5 Hd AR
W = l-(1+%ﬁHAR)e 2 "H (1,5-20)

which looks reasonable and leads to the correct energy deposition when
LIH AR 1is large enough that one can use the diffusion approximation.

As In the case of A we are using only one W per zone. -
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The coefficlents 2Z as defined by Eq. (1.5-13) depend on

+ .1
the unknown spectral distribution I /1 at the point 1 .

Vhe 2% W 0 |
Since the difference equations (1.5-11) apply only to the integrated
intensities I, 1 their solution does not give us any direct information
about the spectral distribution and we must rely on educated guesseé
for the latter. The basic clue which we follow is that the radiation
at some point 1 comes by and large from a zone (the radiating zone)
which lies an optical depth unity behind that point in the direction
where the stream comes from. The distribution has therefore the distri-
bution of a blackbody source at the temperature TR of the radiating
zone but modified by selective absorption in the intermediate zones.

When we apply this model we distinguish 3 typical situations
for the ingoing and 3 for the outgoing stream. This comes from the
peculiar temperature dependence of mean absorption coefficients. For
all these means, whether we talk of ﬁR R ﬁP or ﬁH , One can
distinguish a central temperature range where {1 1is large and the
low and high T ranges where it drops to very low values.

The temperature profile of a fireball is typically a monotonically
decreasing curve. While the central temperature is still large this
profile looks like the sketch in Fig. 1-2 with a central section where
1 1is small so that radiative transfer maintains a nearly constant
temperature. Beyond that plateau comes a more opaque region with a
relatively large temperature gradient and at the point where the

temperature has dropped to where the air is again transparent the profile

becomes again more level. Superimposed on this one finds usually

27



some structure due to shocks or other disturbances but this does not
alter the main conclusion that there are 3 distinct regions.

In the opaque intermediate region the spectral distribution I\)/I
can be identified with that of a blackbody at the local temperature so
that one is led to 2, = Z_ = A . In the interior region the radiation
comes mainly from its boundary where it is 1n contact with the opaque
region. Since the temperature profile is quite level one does not commit
a significant error by identifying I\)/I again with the local BV/B
which varies much less with T than either Bv or B itself. As

in the previous case we therefore use the approximation 2

. =Z_=A.

Only in the outer section do we have to make a more careful choice
of I\)/I and only for the ocutgoing stream. .The ingoing stream carries
essentially no energy and it doesn't matter much what one does. The
simplest cholce is again toset Z_ = A,

The point where it really counts that our model should adequately
represent the true physical nature of radiative transport comes when we
consider the outgoing stream as it emerges from the opaque region.

The absorption to which this stream is subjected is largely due to
molecules. In calculating which parts of the spectrum are and which
are not transmitted one is greatly helped by the character of the energy
dependence of C&) . Fig. 1-3, which is a typical example taken from
SACHA type calculations shows that ﬁ\) is a very rapidly rising
function of frequency. From this graph we find by inspection that a
zone of about 10 m thickness would transmit practically no photons

above 5 eV and practically all photons below 3.8 eV. Approximately

one can assume that there i1s a critical photon energy hvc in the
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vicinity of 4.4 eV at which the transmitted flux is sharply cut off. For
a stream which starts out as a blackbody spectrum —; = b\) (TR)
one finds that the transmitted fraction of the energy is a known integral

Ve

L (Tg, hv ) = [ b, (Tg) dv

o

The procedur_e for determining Z, for any zone 1 - 1/2 outside
the opaque region starts out with finding the radiating zone which belongs
to it and whose temperature has been designated as TR + We assume
that the model spectrum Iv‘ starts out there as a blackbody spectrum
B\) (TR) « Any of the zones through which it passes will not transmit any
radiation above its cut-off energy h\)c and the model spectrum which
finally enters into zone {1 - 1/2 remains Iv = Bv (TR) up to the
lowest cut-off energy h\’min encountered by the stream but is reduced

to I\) = 0 above hv ;. « If zone 1{- 1/2 has a lower cut-off

h\;c’ j-1/2 we set therefore

7 = L(TR hvg - 1/2)
*.d L (TR hVmin)

If the cut-off energy is equal to or larger than h\)min the model
spectrum would lead to Z+,i = 1 which can’t be right and indicates
that the sharp cut-off approximation is too crude to fit this case. An
upper limit for Z can be obtained by setting it equal to the local A
since the bulk of the true spectral distribution lies at somewhat higher

energies than the local blackbody spectrum. Thus the true Iv will

suffer somewhat more absorption than B\) which leads to the inequality
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Z<A.

The modifications which are necessitated by golng to spherical
symmetry can be written down without difficulty. Or;e, only has to note
that Eq. (1.4-14) differs from Eq. (1.4~12) by the factor Rz which
multiplies both I and B . Clearly this factor must enter when one
modifies the corresponding set of Eqs. (1.5-11), As we write down the
modified set we incorporate the result that the coefficlents A and W

depend only on the zone and not on the direction of the stream, and obtain:

2 2 2fB) _
171 %, vl TR (1 i A1+1/2)i3 Ri(ﬁ*>i Wizr, o (1.5-29)

The A and W are as before given by Egs. (1.5-19) and (1.5-20) and
Zi,i is nearly always equal to Ai; 1/2 except in a few zones just
outside the opaque region where one should use Eq. (1.5~22). -

In the two stream model the fluxes differ from the intensities by a
factor 1 as shown in Eq. (1.4-11). The relation carries over when

one performs the frequency radiation so that

Fi,i = 1 Ii,i (1.5-24)
Having determined the intensities by solving the set of Egs. (1.5-23) one
1s therefore ready to evaluate -v ° F which according to Eq. (1.2-8)
gives us the radiative heating rate. Thus one obtains:
é =—3 RZ(F - F )—RZ (F - F ) (1.5-25)
1+1/2 3 3 1 Y+, -1 i+1 V+,i+1 -, 1+1 *
Rie1 ~ Ry
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which is the final equation of the two stream method. Before leaving it

let us take a somewhat closer look how this equation handles a zone in

the opaque region. In any region where one replaces Z+ and Z_

A one finds that Eq. (1.5-23) reduces to:

=B + %
L1~ B X3 ( ?) Wit 1/2

from which one obtains in turn

| _ 2r (dB
F+Ii F"ri 3 (d?)i (Wi"l/z * W1+ 1/2)

In an opaque region this simplifies still further because the factor

in Eq. (1.5-20) becomes negligible compared to unity. One can therefore

set W=1 and obtain:

+Ii —’1 = 3

and since B=% T4

by
(lo 5-26)
(1 [ 5—27)
3 -
~p Hyg AR
(1.5-28)

this is clearly equivalent to Eq. (1.2-9) i.e., to

the basic equation of the diffusion approximation. This is of course no

surprise because we picked cos —% precisely in order to achieve this

equivalence.

In an opaque region, the diffusion approximations contains all

the physics needed for the calculation of radiative energy transfer and

it is superior to other methods as far as speed and possibly accuracy of

calculation are concerned. Hillendahl's formulation of the two stream
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method automatically leads to this procedure. More elaborate methods
such as the multiple ray technique do not, but it is of course possible
to switch to a diffusion theory calculation when one considers an opaque
region. This is indeed done in the SPUTTER program.

In the form outlined in this section the two stream method is not
applicable at high altitudes where the amblent air has a density less
than about p/po = 10~‘1 . At such densities the air becomes transparent
in the spectral region where Bv has its maximum and the fireball has
no opaque region. There is still a significant amount of radiation at
frequencies above and below this window but one has to devise new
methods for dealing with this problem. At these altitudes the mathematical
difficulties are further aggravated by the nonjspherical energy deposition
which takes place when the mean free path of x-rays get large compared to
the atmospheric scale height. Eventually, say at about p/poﬁe I x 10_6

the ailr becomes transparent in all parts of the spectrum and thermal

radiation 1s no longer a significant factor.
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Chapter 2, THE PHYSICS OF FIREBALLS

2.1 Introduction

A nuclear explosion in the atmosphere creates a fireball whose
development depends in large measure on the physics of hot air, All
of the previously discussed properties of hot air and all of the mechanisms
for energy transport developed In previous chapters are a part of nuclear
fireball physics. However, these energy transforming and transporting
relations and the detalled knowledge of the properties of air find
considerably wider application. They have or can contribute to the study
of stellar dynamics, the nature of stellar atmospheres, the radiation
from various astrophysical sources, and they can ald in the study of
hypervelocity flight, upper atmosphere physics, aurora, and other atomic
and molecular physics problems which involve high temperatures.

It is certainly the case that the information presented in these
previous chapters makes the conditions created in a nuclear explosion
more understandable. Some knowledge of air heating mechanisms, of
air excitation, of radiation transport, and of hydrodynamics, of absorption
propertles, and of the thermodynamics of air is necessary before a full
1 description of a nuclear explosion can become more than heuristic.

Much of the present knowledge about fireballs has been gleaned
from test observations, but by far the greatest detail has come from
numerical computer calculations, as have the quantitative estimates of
fireball interior dynamics which appear in this chapter. Calculations of
widely varying detail and sophistication now abound, and it is not the
intention in this chapter to review such results or analyze computing
methods. Most current calculations rely for thelr measure of success on

the extent to which the physical concepts and properties covered in the
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preceding chapters have been taken into account in a mathematical model.
The principal objective of this chapter is to outline the physical features
of nuclear fireballs and their thermal radiations, stressing where possible
those factors which are most general and which provide the best under-
standing on which to base predictions and extrapolations. The approach
adopted is to begin by considering a small yield explosion (1 kiloton)

at sea level and to describe the sequence of events which occur un-
encumbered with interactions from the earth's surface or inhomogeneous
environments, This development will then be extended to higher yields
and altitudes. There will be no attempt at completeness and no great
concern for quantitative rigor, but it is intended to display as much as

possible the current understanding of the physics of nuclear fireballs,

N

2.2 One kiloton at sea level

A one kiloton explosion in a sea level atmosphere provides an
appropriate example for an initial examination of the sequence of events
that constitute a fireball history, The now familiar usacje of kilotonage
and megatonage refers to the total energy release in a nuclear explosion
with the usual metric prefixes for a thousaﬁd or a million and with the
understanding that a ton of high explosive - TNT - releases 109 calories
of effective energy, i.e., one gram of TNT is taken as equivalent to
one kilocalorie or 4.185 % 10lO ergs.,

For any nuclear explosion the sequence of events is remarkably
complex. In following its development for this one kiloton sea level

explosion, the reader may appreciate that the present understanding,
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although not complete, has become quite detailed and much of it has
grown directly from the material reviewed in this series of volumes.

The nuclear energy is released in an extremely short time - a
small fraction of a microsecond - and always in a small mass and
volume. It is the properties of this small mass, constituting the
weapen itself and its carrier that determine the early source of energy
for the fireball, and some of these properties may influence the
character of the later thermal radiation. Everything starts in this
nuclear source and all of the initial radiations - gamma rays, neutrons,
and x-rays — are generated by it. However, the air or other immediately
surrounding material absorbs almost everything emitted within a few
hundred meters and the nature of the observable fireball is largely
determined by the properties of this surrounding air, For our example
of one kiloton in a sea level atmosphere, the air within a few feet of
the weapon stops nearly all of the x-rays, and the prompt gamma rays and
the neutrons have removal mean free paths of about 400 and 240 meters,
respectively. These rapid absorptions make knowledge of specific
details of the nuclear device largely unnecessary in describing the
fireball phenomena. Consequently, we shall be able to proceed without
reference to classified aspects of nuclear weapons and yet without
significantly truncating our description of the fireball and its thermal
radiations.

The fraction of the energy which may be radiated out of the weapon
as x-rays before it begins to blow apart under hydrodynamic action
depends largely on its yield-to-mass ratio and to some extent on other
construction details. This fraction may range from almost nothing at

all (or a very small percent) to a significantly more than 80% of the total
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energy generated (Glasstone, 1962; Brode, 1964 b).

Before the air has had a chance to re-radiate any of the energy
deposited by the x-rays, the bulk of'this energy is concentrated in a
relatively small sphere and at a temperature which is.typically of the
order of several million degrees K. There is, however, a small fraction
of x-rays, from the high frequency end of the spectral distribution function,
which penetrates to a distance of perhaps a few meters, and heats this
shell to temperatures in the 10,OOOOK range. Energywise this heating is
insignificant but it makes a contribution to the fireball phenomenology
which is of some interest. By consulting the table of mean free paths on
p. 447 of (3)* we discover that this shell is opaque. As long as it exists
such an opaque shell hides the much hotter sphere on its inside and all
that can be observed is the radiation from the shell itself, which is
comparatively dim. |

This phase is always very short-lived and terminates when the
radiation from the center floods into the shell and heats it up. During the
next phase the fireball can be characterized rather well as an extremely
high temperature sphere of air surrounding the nuclear source and showing
a fairly sharp temperature drop at its edge. The interior of this high
temperature sphere may be at a fairly uniform temperature, and the whole
may contain quite a large fraction of the nuclear explosion energy in the
form of heat. Some small fra.ction always remains in the dense bomb
vapors, but most of the early phases of the fireball development are quite
independent of the details of the weapon design. The subsequent explosion
and radiation behavior can be derived almost entirely from the properties of

this hot air. Such a model will be less true in high altitude or space

DASA-1917-3.
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environments where the immediate external surroundings fail to contain as
thoroughly the explosion energy because they lack sufficient opacity or
optical thickness.

Throughout the explosion development, radiant energy is emitted by
the fireball. That fraction which is transmitted by the cold exterior atmosphere
is called thermal radiation. The rate of energy emission, or radiated power,
has shape as shown in Fig. 2-1. If the opaque fringe layer has been penetrated
early enough and if the instruments used for measuring the thermal power
have sufficient time resolutions, the signal will include the early peak which
is shown as a dotted line. COtherwise, one sees the two-peak curve which
is drawn as a full line. The explanation of this curve is an important
objective of any theory.

Although it is a rather simple exercise, it is instructive to note the
rather small size of air volumes required to contain the large amounts of
energy at the high temperatures created by the absorption of the initial
flux of x-rays. The following table indicates the radii of spheres for a
few examples of energy content and temperatures. These temperatures,
of course, are too high for the air to remain that hot for very long, but in
the immediate first fractions of a microsecond these radii are representative

of the sizes and temperatures of the earliest (x-ray) fireballs.

Size of Spheres of Sea Level Air Necessary
to Contain 1 KT, 1 MT or 100 MT of Energy at
Various Uniform Temperatures

TemperatureO

Millions of “K 1 XT 1 MT 100 MT
7 1/2 3/4m 7.5 m 35 m
6 1 10 46
5 11/4 12 57
4 l.6 16 74
3 2.1 21 100
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In a very few microseconds, these fireballs would have grown much larger
and much less hot by the continued diffusion of radiation into the external
cold air.

For most considerations these earliest phases of x~ray deposition and
re-radiation remain both obscure and of little probable importance. When
the flux of source radiations has been sufficiently intense as to completely
strip the electrons from the air ions, then that volume of plasma can offer
only Compton scattering as further resistance to the x-ray flux or as opacity
to its own re-radiation. The most appropriate physical model for the con-
tinued expansion of this low emissivity, high energy density reglon is
neither by hydrodynamics (which requires relatively long times to accelerate
masses of gas) nor by radiation diffusion which presumes many interactions
over any appreciable temperature gradient. The growth of such a heated
volume is a radiative process which can be characterized roughly by its
emissivity, temperature, and volume together with the heat capacity of
the external cold air. The single further physical characteristic necessary
to include in a growth rate prediction is the fact that the surrounding air
1s essentlally opaque to the radlations from this hot air, Detailed
knowledge of the opacity between this blackness at cold temperatures and
its transparent nature at sufficiently high temperature is at this point
unnecessary. Thus, the rate of energy lost, expressed as a grey-body loss
rate, is the rate at which energy is deposited in the cold alr at thé surface

of the high temperature sphere, viz.,
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in which e s the emissivity, T the temperature of the hot isothermal
sphere, R its radius, and dW/dt the rate of energy change. When
an appropriate specific heat 1s introduced, a differential prescription for

the volume growth and temperature drop results.,

Following this approximation, one can express the rate of growth,

dR/dt, 1in the same terms as

(2.2-2)

in which E represents the internal energy per unit mass, and p the
density of the air just behind the front, while T 1s the inner temperature.
The usefulness of this approximation in estimating the rate of growth of a
partially transparent fireball is largely dependent on the accuracy with
which average or "effective® interior temperatures, specific energles,
and emissivities can be chosen. During the most rapid expansion, the
interior is likely to be considerably non-isothermal, {.e., the interior
may be more than twice as hot as the regionvjust behind the front. The
dependence on the fourth power of the temperature makes this rate quite
sensitive to such differences. The most uncertain quantity is likely to
be the effective emissivity, since it represents some average over the
emitting region, and may also disguise some geometric dependence -~ not
all the radlation being‘emitted radially. Appropriate choices of effective
emissivity and temperature may make this simple formula appropriate

for predicting the growth rate during the subsequent radiation diffusion

phase.
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The temperature proflles illustrated in Fig. 2-~2 are typical of this
early radiative growth for a one kiloton sea level burst. The curves
represent the air temperatures as a function of radius for six selected
instants in time. The dashed curve indicates the shock temperatures.

It is the lowest temperature within the fireball at each of these times.
After about 15 microseconds, the radiation diffusion growth becomes so
slow that a shock wave begins to form, to compress the newly engulfed
alr and heat it to a temperature substantially below that of the radlatively
heated inner sphere. WIith either the early radlative expansion or the
subsequent adiabatic expansion behind the forming shock front, the inner
temperatures drop with time in an approximately exponential fashion.
During this early growth, the power radlated or the thermal radiation to
points outside the fireball is not a significant fraction of the energy it
contains. The time is short, the size 1s small, its opacities are high, and the
fireball exterlor so well shields the hotter core that the radiation out is
less than half a per cent of the available energy.

Of course, the radiative properties are influenced by the alr density
as well as by the temperature, and the gradual formation of the shock
causes an appreclable increase 1in the air density at the fireball surface
(as much as tenfold increase at sea level). In the process, the outer
surface of the fireball passes from a rather diffuse radlation-driven front
to a sharp, dense shock front. Fig. 2-3 shows some typical early density
profiles, in which the shock is seen to grow and the fireball interior is
seen to expand to much less than the external ambient density.

Reference to the opacities for air as given in Volume 3 will
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confirm that the shock front at these early densities and temperatures
1s quite opaque. For instance, at the 250 psec time of Figs. 2-2 and 2-3,
the emission mean free path for a shock temperature of 30,00001( and a
density of 8 times normal is about 0.01 cm. The fireball will expand to
much lower temperatures and much larger size before anything behind
the shock front will become visible. It is during this period that the
thermal radiation rate decreases toward a minimum and the fireball appears
to grow dimmer. (Fig. 2-1, before one millisecond,)

If the fireball growth rate defined in Eq. (2.2-2) is computed for
the earliest time illustrated in the temperature profiles of Fig. 2-2,
assuming for the moment an emissivity of unity, the rate is about
4.4 x 108 cm/sec. This rate is too high by an order of magnitude in
comparison with results of the numeriéal calculation example. The
calculation showed that the expansion at this 1.2 microsecond time was
still being determined by radiation diffusion. The calculation, however,
also treated the earliest times by diffusion, and not (as suggested above)
by transport within a transparent heated region with a radius less than
one mean free path for the emitted radiation. The appropriate mean free
path for diffusion is the so-called Rosseland average, hereafter abbreviated

as Rmfp. The Rmfp is defined as

dBy
Jvdev

j——dv

in which >‘v is the spectral mean free path, Bv (T) the Planck function,

[=+]

and j dv denoting integration over all frequencies. The Rmfp used in
o

(2.2-3)
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the calculation approaches the Compton limit at high temperatures, however,
and allows the rate of growth to be equally fast. In fact, without special
consideration for relativistic effects, the diffusion growth can exceed

even the speed of light,

At the earliest time illustrated in Figs. 2-2 and 2-3, the fireball
has grown to more than one mean free path in radius which reduces the
effectiveness of the inner temperature in driving the continued expansion.
A more heuristic interpretation of the growth rate formula allows the
emissivity to be interpreted as a resistance parameter which reduces the
growth rate to less than the blackbody rate for that central temperature.
An alternative interpretation treats this gfficiency factor as one which
compensates for the use of the shielded innermost temperature when the
effective temperature is at some radial position further out and is lower in
value, i.e., e~ (To/Ti)4 where T, is the effective outer temperature
and Ti is the screened central temperature. A crude measure of this
correction and of an appropriate value for this viscosity constant might
be the ratio of the Rmfp to the radius of the front, i.e., the reciprocal
of the number of mean free paths between the radiating interior and the
front. Tor the diffusion approximation, such a correction might better

be expressed in terms of the local temperature gradient as well.

45



The inner temperature of our example calculation at 1.2 micro-
seconds is around 106 OK (Fig. 2-2) and the density is still normal
(1.29 x 10_3 gm/cm3) (see Fig. 2-3). The Rmfp is a bit less than one
meter, while the radius is about 3.2 meters. Taking e to be 1/3.2
brings the growth rate down to about 1.3 x 108, which s still high
compared to that for the numerical calculation. The mean free path

6 OK, however, and

decreases rapidly as the temperature falls below 10
since the front at 1.2 usec Is at around half the interior temperature,
a more appropriate mean free path might be between 0.92 (the value at

10® °K) and 0.12 (the value at 5 x 10° ©

K). Taking the average of their
reciprocals, l.e., averaging the opacities, gives about 0.2, so that
the correction factor, e , becomes 0.2/3.2, and the corrected rate
becomes ~ 3 x 107 which agrees well with the growth rate at that time
from the detalled diffusion calculation.

The most appropriate specific energy and density values for use
in the growth rate approximation are those just behind the front of the
wave, since it is to those conditions that the cold air is to be heated,
i.e., it is that heat capacity that will absorb the subsequent radiation
energy flux. Fig, 2-4 displays the specific energy profiles for this
one kiloton example for the same time as those of Figs. 2-2 and 2-3.

It 1s interesting to test the simple growth rate formula (Eq. 2.2-2) against
the fireball growth speed that results from the numerical calculations.
The calculation should show a rate faster than hydrodynamic shock
growth until the radiation growth has fallen below the speed of hydrodynamic

motions, and this simple form should show a comparable rate

until that time, then a much slower rate as the shock wave takes over.
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Fig. 2-5 compares these rates for the same time period as covered by

the profiles of Figs, 2-2, 2-3, and 2-4 and beyond. In these
comparisons, several approximations are represented by dashed curves,
while the numerical calculation rate is shown as a solid curve. The rate
cal.culated as blackbody at the inner temperature, shown as circled points,
is clearly too high at all times. Even when the lower temperatures of

the outer edge of th_e hot region are used to determine a blackbody rate
(the triangles A of Fig. 2-5), the rate is at all times toa high.

When the radiative resistance parameterisrepresented as theratio of the Rmip
to the hot region radius, using the Rmfp evaluated at the hot interior
temperature, the modified rate 1s still high at the early times when
diffusion is still dominant (the square points of Fig. 2-5). It drops
precipitously as the interior cools and becomes opaque at just the times
when a shock begins to form (at about 10 miqroseconds in this example).
Although this approximation is not correct in value, the sharpness of
the decrease as hydrodynamics takes over can make it a useful indicator
of the transition onset, and so a reasonable prediction tool.

The more accurate estimate of the early diffusion growth rate,
involving the averaged opacity between interior and front, is also more
subject to error due to the difficulty in judging appropriate front conditions.
These estimates are indicated in Fig. 2-5 by diamonds. These values
are closest to the numerical calculations rate of growth at the earliest
times when diffusion is the dominant mechanism. The earliest profile
front temperatures are difficult to define because the front is not sharp.

The rate of growth estimated at these approximate front temperatures with
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a corresponding resistance parameter leads to the estimates indicated by
the triangles [ in Fig. 2-5. Again, the shock formation times is denoted
by a sharp drop in the rate estimated in this manner. Both of the blackbody
rate curves (upper curves of Fig. 2-5) show a fairly sharp drop at shock
formation time. Such a simple but uncertain formula may be preferable to
the use of the radiation resistance ﬁotion in determining shock formation
radius and time. Since in this range of temperature and densities, the Rmip
decreases with decreasing temperature as about the fourth power of the
temperature, using the Rmfp as a correction factor then means that the
adjustment parameter is as sensitive to temperature changes at the black-
body rate itself. Such critical opacity dependences may provide some sharp
distinctions in estimates but at the same time present some hazards in
choosing effective temperatures too casually.

After shock formation, the rate of growth of the fireball should
follow the ‘shock growth itself until the shock cools to transparency.
The shock speed for a strong shock is approximately given by
&y S+1)P

——s -—
s ~ Zpo (2.2 4)

;U-

= + i i 1 1
where 'ys (Ps/pSEs) 1, Po is the ambient air density and PS , pS ,
and Es are shock front values of pressure, density and internal specific
energy . This approximation is shown in Fig. 2-5 by the symbol < . For
the earliest times, the expansion is faster than this shock rate, but at

later times it corresponds well.
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Using the particle velocities (us) at the front and the density at
the front (through the mass conservation relation) provides the relation
s l‘lsp 5

R, = 2.2-5
s PPy . ( )

The rate derived from corresponding values of ug and P for the
numerical calculation is indicated in Fig. 2-5 by triangles pointing down
(v). Aftef nuclear shock catch-up this curve coincides with the solid
curve for the directly computed rate,

In the temperature region of interest, a shock can be pictured as a
sharp gasdynamic jump imbedded in a region of radiation-induced temperature
variation (Fig. 2-6). The internal structure of this type of wave has been
investigated extensively by Zeldovich (1957) , Raizer (1957), and Heaslett
and Baldwin (1963), to name a few, all of whom employed the equations of
steady continuum gas dynamics with gray radiative transport.

The important feature of this picture is the temperature precursdr which
runs ahead of the sharp front. This precursor is created by the radiation
from the high temperature region behind the sharp front. One can estimate
the temperature of the precursor by equating the power radiated by this

front with the rate of heating in the precursor. In the resulting relation
pue_ =o0oT (2.2-6)

p , u and ep stand for the ambient air density, the shock velocity and
the internal energy of the air in the precursor. From the latter quantity and
the equation of state, one can then obtain the temperature of the precursor.

Using the Hugoniot relations (Section 5.1 of (4)) and a simple analytic fit
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to the equation of state, one obtains at sea level the relation

T = 3.45x 1077 ¢ 27 (2.2-7)
For a shock temperature of 105 °K we calculate a precursor temperature of
23,OOOOK and note that a millimeter layer of air at that temperature is opaque.

Up to the time when the shock temperature drops to 105 °K all the thermal

radiation comes therefore from the precursor. To make a quantitative

evaluation of the power radiated during this phase requires a more detailed
analysis of the radiative transfer problem. Qualitatively one can see that

the power must decrease with time and this is the decrease following the

early peak in Fig. (2-1).

As the shock temperature drops below lO5 OK, the precursor cools to
where it gradually becomes transparent so that the radiation from the shock
front begins to shine through. When this happens the power-time curve goes
through the minimum which is shown in Fig. 2-1 as the shock precursor
minimum (SPM). While the shock front gets more and more exposed, the
power rise because of the exposure is eventually compensated by the
temperature drop of the shock itself and at that time the power level reaches
the maximum which is shown on Fig. 2-1 as the shock exposure maximum (SEM).

During the phase following this maximum the rate of thermal radiation
loss from the fireball can be characterized as that from a blackbody sphere
at the shock front temperature and of radius equal to that of the shock
radius., Although such a rate describes the fireball emission, the power

observed at any distance will contain only that fraction which the cold air
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outside the fireball is capable of transmitting. To a good approximation,
that fraction can be calculated by assuming a simple cut-off in the trans-
mitted spectrum. Values of this fraction f(TS,\)C) where Vo is the
frequency corresponding to a cut-off at 18604 (representing the edge of the
OZ» absorption) are shown as functions of the temperature (TS) in

Fig. 2-7). The fraction is evaluated from a tabulation of the Planck radiation

function and its partial integral by Gilmore (1956) . The fraction is defined as

€ 3

_ 15 x_dx _

f(TS'VC) - 4 / < (2-2 8)
n e -1

where xc=h\)c/]<Ts and h and k are Planck's and Boltzmann's

-16 erg/°K) .

constants, respectively (ha 6.625 x 10_-27 erg sec, k~1.380x 10

During this phase which lasts until the shock temperature has dropped
to so low a value as to make the shock front transparent, the following
simple expression characterizes the thermal radiation rate for an air burst
nuclear explosion:

2 4
P~ 4nm R0 TS f(TS,\)C) ) (2.2-9)

in which Rs represents the shock radius, Ts the temperature, o
the Stefan-Boltzmann constant (5.672 x 10_5 erg/cmz/deg4/sec) and
f(Ts,\)C) the fraction passed by the cold air.

Unit optical depth for most frequencies grows longer as the shock
front cools, so that emission from hotter air behind the front begins to
shine through. The shock front itself becomes fainter and appears to pull

ahead of the luminous fireball, a phenomenon which is referred to as the
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"breakaway" (Gladstone, 1962, Section 2.110). Because the shock has
been carrying the shock-heated air outwards with its expansion, a rather
steep gradient in temperature is maintained just behind the front, so that

a slight increase in unit optical depth exposes higher temperatures but at no
appreciable decrease in radius of effective radiating surface. At this time
the power curve goes through the principal minimum (PMIN) in Fig. 2-1.

Fig. 2-8 indicates the geometry of fireball temperatures (in cross-
section) at a time somewhat beyond the time of minimum thermal power.
While the thermal radiation increases, and while progressively deeper parts
of the fireball are exposed, the hydrodynamic expansion dominates so that
the visible or apparent fireball size continues to grow. Eventually, the
luminous fireball stops expanding and the power output reaches the final
maximum (FMAX) .

Throughout this radiative and then hydrodynamic expansion of the
fireball, right up to the time of minimum light intensity, something less than
half of one percent of the total yield has been radiated out of the fireball.
Both integrals of the measured power-time data from tests and of the simple
expression given above for radiation from the fireball (as determined by shock
front conditions) lead to an answer close to 0.44%. In the latter integral,
the properties of the shock front are sufficiently well defined by almost any
calculation - even those not accounting for radiation transport in the early
phases, but necessarily taking account of the real gas properties of air,
(e.g., Brode, 1956a,b).

Since the air just behind the shock is much hotter and much
less dense than the air at the front itself (see Figs. 2-2, 2-3, and
2-4), the rate of thermal radiation increases rapidly when that air is

exposed, until the hottest temperatures at the back of the steep gradient
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behind the shock front become visible and are radiating directly to the
exterior. Thereafter, as the size of the radiating sphere shrinks and
the interior cools, the rate decreases. This is the period in which the
fireball history comes closest to the cooling wave notion expressed in
a simple form by Zel'dovich, Kompaneets and Raizer (1958) and applied
into a fireball theory by Bethe (1964). The notion is that a recognizable
and fixed form cooling wave erodes the hot fireball interior, beginning
at the exterior and working inwards. After the shock front has become
transparent, such a cooling wave process 1s very likely operating, but
it is not at first working into a fixed or uniform temperature or density,
and it is not shrinking the fireball. The outward hydrodynamic expansion
is still too strong, When the outer regions have all become sufficiently
cool and transparent so that the inner radiation-heated region is exposed,
then the conditions suggested for a cooling wave are approximated. Even
then the temperatures are not constant and the surface area is shrinking
rapidly, so that the cooling rate decreases. When this interior sphere
has cooled to below about 10,000°K, the whole of the fireball has become
relatively transparent, and the subsequent radiation losses are characterized
more by a grey body approximation, i.e. , characteristic of a volume of air
of low emissivity - one of less than unit optical thickness. It may also
still be expanding adiabatically, and contributing energy to the shock
growth.,

Temperature profiles spanning this period from principal minimum through
final maximum and on to a transparent fireball are illustrated in Fig. 2-9,
For a vleld of one kiloton, the cooling wave is less obvious as a wave

than as a rather sudden depletion of the hottest interior region. At larger
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yields, where more optical thickness is represented at every stage,
the progress of a cooling wave from outside toward the center is more
easily imagined (Brode, 1964a, Fig. 5, b Fig. 15).

In this rather complex power radiated history of two or three maxima,
as illustrated in Fig. 2-1, the final pulse represents a total energy of 30
or 40% of the total yield of the nuclear device. When all the energy is
accounted for , including that in the infrared which originates in shock
heated air outside the visible fireball and is radiated only very slowly, the
fraction may be even larger.

There are several features of this one kiloton explosion fhat have
not yet been mentioned and that are of lesser influence on the thermal
radiation and fireball behavior at sea level, but which become relatively
more important at other yields or altitudes. One such feature is a second
shock wave which originates within the bomb vapors, traverses the early
sphere of hot air behind the radiation front, and overtakes the strong
shock that forms the fireball surface at later times. This debris or
bomb shock is seldom in evidence in sea level explosions, and has lost _
most of its energy long before it overtakes the main shock, so that it
contributes little to the fireball surface or thermal radiation histories.
Because the hot interior of the fireball is for most of the fireball expansion
a region of long mean free path, it is a region of nearly uniform temperature.
When the case shock compresses and heats this air further, some of that
heat is promptly re-radiated ahead, forcing this interior shock to behave
isothermally rather than adiabatically. This isothermal shock can lose

energy very rapidly by this means, and may persist only through the
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continuation of its outward momentum.,

A history of the radii'of this shock and other fronts in this kiloton
example is shown in Fig.2-10. When this debris shock travels outward
to the edge of the fireball, it encounters a sharp discontinuity in density.
At that point, a reflected shock originates and is returned inward to
implode upon the origin. Here again, is a phenomenon which has no
consequence for this example, but may be prominent in high altitude events.
The vaporized bomb expands along behind this debrls shock,” but at sea
level is not visible until very late -~ after the second maximum in the
thermal power., This bomb debris is not realistically treated in any of
the usual calculations, since they invariably assume radial symmetry
and allow no mixing or turbulent flow. When it emerges in the transparent
fireball a;t late times, the vaporous debris has become highly turbulent
and has evidently mixed with considerable fireball air.

Although Fig.2-10indicates a transition from radiation expansion
to strong shock expansion, the radiation diffusion does not stop. As the
shock brings down the density in the interior air, the opacity of that air
decreases also, and the radiation is allowed to diffuse into some of the
now shock~heated air. The dotted curve below the shock front curve of
Fig.2-10indicates the position of the radiation front. Most of its outward
excursion is due to the flow of air in the expansion behind the shock
itself, At times later than shown in Fig.2-10, the radiation front and the
visible fireball drop behind. The short dashed curve near the end of the
shock front curve of Fig, 2-10represents a position close to the fireball
front - being the locus of points at 5000°K - with higher temperatures

inside of that radius, and colder temperatures outside.
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The continued flow of radiation is made more obvious in a plot of
the temperature histories of several shells of gas representing the air
that was shocked to a particular temperature, cooled in the subsequent
adiabatic expansion, but then reheated by the radiation wave following.,
Such a set of curves are shav i In Fig., 2-11, where at particles shocked

5, 70,000 and 4O,OOOOK the adiabatic cooling is arrested by the

to 10
arrival of the radiation diffusion wave which causes that shell of air

to rise in temperature again. The air starting at the ZO,OOOOK shock

point is never over-run by the radiation wave, l.e., the radiation wave
stops before it gets that far, having run out of energy and not being

alded by further expansion which would help to reduce the opacity of the
cooler air in front of it.

A great many nuclear weapon applications, tests, and effects
interests involve the thermal and fireball effects of nuclear explosions on
or close to the surface of the earth. Many Interesting and novel inter-
actions occur which are not evident in air bursts well away from the
sur face. However, there is no intention of providing a review of these
factors in this current effort. It should suffice to point out that all of
the essential features which are described and followed here are also
an important part of surface bursts, while the latter are further complicated
by the early injection into the fireball of massive amounts of earth material,
and by the geometric distortions of the fireball that occur as a consequence
of shock and thermal reflections from the earth's surface. The change in
radiator shape from spherical to at best hemispherical or worse a partially
obscured hemisphere means that the thermal flux to other points on the

earth’'s surface will be less than that from an air burst. Total flux at
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points in the air above the burst may at the same time be increased.

As the earliest pictures of nuclear explosions (Glasstone, 196‘2)
clearly show a further consequence of the ground involvement is the
"dust skirt™ which precedes the fireball shock and largely obscures
the base of the fireball. Although not visible in any of the pictures,
there must also be vast amounts of earth shovelled into the hot fireball
interior at an early time (Brode and Bjork, 1960), and this material cannot
faill to have profound effects on _both the temperature and thermodynamic
state of the fireball gases and on the opacities or optical properties of
that region, Test observations indirectly attest to the influence of such
surface effects,

Observations and measurements‘at-very late times in the fireball
history show that the radiaton rate trails off with a very long tail (as in
Fig. 2-1) and comes from shapes other than simple spheres. The fireball
at late times is like a bubble in the atmosphere - having very low densities
in its Interior - and so it rises, and in rising breaks up at the bottom to
transform itself into the familiar atomic cloud ring or torrold which rolls
its way up through the atmosphere. The torroidal circulation that is
induced 1s quite strong and serves to severely limit mixing of the hot
fireball gases with the exterlor cold air, thus prolonging the existence
of alr and debris at temperatures of thousands of degrees Kelvin, while
the cloud rises in the atmosphere. When much earth material and/or
water vapor is present, the late fireball remains opaque, and the rate of
late radiation is more determined by the rate of turbulent mixing which

brings hot gases to the cloud surface rather than by the radiation transport
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properties alone. For an air burst well above the surface, however, the
late fireball becomes quite transparent, so that only a faintly luminous

ring assures us that the rise and circulations are much the same as for

lower bursts.

2.3 Other vields and altitudes

The example of a one kiloton detonation at sea level contains all the
basic physical phenomena which enter into consideration at «ther yields
and at altitudes up to about 70 km. The overall appearance is, nevertheless,
appreciably different since the 'individual events which are responsible for
the various maximum and minima in Fig. ‘2-1 occur at different times.

.In carrying out a discussion of these changes, it is useful to note
that the rélation between shock radius and time can be approximately repre-

sented by a hydrodynamic scaling law. To formulate this we introduce the

scaled variables

. [=\/3
— e -
R =\5% R (2.3-1)
—\1/3
i = % ot (2.3-2)

where Y is the yield of the explosion and 5 =p/po the ambient air
density relative to that at sea level. In our 1 kiloton sea level example the

scaling factors are of course unity.
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The scaling law is not valid until after the debris shock has caught
up with the somewhat slower shock which is driven by only a fraction of the
total yield. The scaling law can be deduced from the strong-shock solution
for a point source (Taylor, 1950; and Sedov, 1959). This limits the validity
of the scaling laws at late times when the shock becomes weak. The law
obtained in this manner takes the form

* * 2/5
R, = k(t ) (2.3-3)

where the subscript s denotes that the value is taken at the shock front.
From the radius RS =20 m read off Fig. 2-10 for = 1 msec,

one determines the proportionality factor to be
k =20 m (msec)_z/5 (KT)"l/5 (2 .3-4)

In the above scaling law the scaling factors cancel out of the expression

for the shock velocity

-3/5
_ s . s . % k(t™) (2.3-5)

*
which makes this velocity a function of t only. Applying the Hugoniot

relations one can now show that the temperature TS behind the shock is
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also very nearly a function of t1k only. This is not an exact result because
it depends on certain assumptions about the equation of state which are only
approximately true. If one checks the prediction that TS is a function of
the scaled time only against computed results, one finds that it fits the
changes with yield at a given altitude very well. The changes with altitude
at a given yield are not given with quite the same accuracy, but are still
sufficiently close for most purposes.

It should be noted that the above scaling procedure differs somewhat

from the so-called Sachs scaling where one introduces the variables

X = /3R (2.3-6)

=+
I

oY (o) %4 2.3-7)

If one expresses the ambient pressure and density p and p , the yield
Y and the variables R and t all in the same system of units,the scaled
variables are dimensionless, It is more convenient, however, to replace p
and p by the ratios P = p/po and g =,o/po relative to the sea level
values, and to express Y as before in KT. With this choice, the strong
shock relation between R and T is the same as between Rﬁlr and | t* ,
i.e. Eq. (2.3-3) with the same value of the constant k

The two methods of scaling differ in regard to what are considered
similar situations. For the starred variables similarity implies that for example
the hydrodynamic velocity and the temperature are unchanged; for the variables
with the tilde the Mach number and the temperature ratio T/»TO are unchanged.

Either choice is acceptable, but ours has the advantage of using only one

parameter to characterize the altitude.
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From the time of shock formation until breakaway the thermal radiation
comes partly from the shock precursor and partly from the shock front, and
it is evident that the shock temperature is a major factor in determining the
timing of the maxima and minima during this period. At a given altitude_ where
one has a one-to-one relation between shock and precursor temperature
(see Eq. 2.2-7 for the sea level case) it is fairly accurate to state that the
shock formation maximum, the shock precursor minimum and the shock exposure
maximum occur at fixed values of the shock temperature and therefore at
fixed values of the scaled time. As one considers different altitudes the
relation between Tp and Ts changes and one finds different values
of the sca‘led times associa;ted .with these features of the power curve.

After breakaway the radiation comes from points to the inside of the
shock front whose locations depend on the optical properties of the air and in
turn on thg temperature and density distribution. This is a radiative transfer
problem and hydrodynamic scaling, where times vary as the cube root of Y ,
is replaced by radiative scaling, where times vary approximately as the square
root of Y (Glasstone, 1962, section 7.92).

Altitude scaling is a more difficult problem than yield scaling. We have
already mentioned the effect of the changing relation between TS and Tp
To this we must add that the relative importance of hydrodynamics and
radiation transfer shifts with increasing altitude in favor of the latter. Thus
shocks form more slowly and radiation is emitted more rapidly &as one goes to
higher altitudes. As a result the features before breakaway are increasingly
delayed and the maxima and minima tend to become weaker. The final
radiative pulse on the other hand advances in time and becomes more prominent,
At about 50 km the early features have become washed out and what was the

final pulse is now the only pulse.
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Chapter 3. SUMMARY

As the reader of this report will have gathered any- attempt at following
the evolution of a fireball by numerical means utilizes a whole spectrum of
facts and assumptions ranging all the way from being undisputable to being
highly suspect. This is likely to leave him with a somewhat uncomfortable
feeling about the reliability of such a calculation. In this summary we will
put the finger on some of the underlying assumptions, point ocut what we
know about their validity and evaluate how strongly our lack of basic
information or of the willingness to spend computing dollars will influence

the final product.

3.1 Equation of state
Nearly all calculations make the basic assumption that the air remains

throughout in a state of LTE.* Once this is accepted it follows that the
relation between the various state variables can be found by the methods
of statistical mechanics. The application of these methods is very straight-
forward and the results as presented in (1) and (3)**are probably correct to
within a few percent. In some instances analytic fits which were made to

feed these results into a computer have been poor but this problem can
certainly be overcome and should not contribute significantly to errors in
hydrodynamics or other phases of the main calculation. Some problems may
arise in the central region where one has debris rather than air and even
more so in the transition region where one may have a debris air mixture.

Fortunately many important results are rather insensitive to these details.

Local Thermodynamic Equilibrium (LTE).

* %k

(1) stands for DASA-1917-1, etc.
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3.2 Absorption coefficients

“ This subject has been discussed in detail in (2) and related facts
are brought up in Chapter 1 of this volume. There are several ways of
describing the absorption which differ in the amount of detail which is
pre_sented. The most detailed description consists of a listing of lines
with intensities and line shape parameters on top of a continuum. All

these factors are squect to errors as we shall briefly discuss.

In the low temperature case where the lines are due to molecular
systems the information comes largely from experimental spectroscopic
studies. The limitations of our knowledge about frequencies and intensities
is discussed in (2) Chapter 7. The information on line shapes islalmost
non-existent. To this one should add that one can hardly afford to include
an? but thé strongest band systems. Even the rather minimal choice of
eight band 'systems in the most recent version of the SACHA program brings
the number of transitions to over 190,000.

In the high temperature case the absorption comes from inverse
Bremsstrahlung and from transitions in atoms and atomic ions. There is
a strong continuum due to the first and due to photoionization. There is
a fairly well developed theory and some experimental information backing
it up. On top of the continuum is a large number of lines. A few levels
have been observed experimentally but the majority, eépecially for the
highly ionized atoms, have not been observed and must be obtained
theoretically. "It is certainly necessary to find the transition probabilities
by quantum mechanical methods. These are so complex that one is forced

to make radical approximations to get any answers and the results are not very

reliable.

75



The calculation of the line contribution is the most elaborate part
of the program and again one can hardly afford to include any but the
strongest lines. This involves a somewhat arbitrary cut-off procedure
whose practical effect can only be evaluated when one specifies how
the absorption coefficient is to be used.

The detailed description of absorption with fine spectral resolution
greatly exceeds the requirements of radiative transfer calculations, As
shown in (2) Chapter 2, it is unfortunately difficult to define averages which
permit satisfactory calculations. Thus Planck and Rosseland means which
average W, and uv-l respectively apply only in limiting situations;
the one for very transparent, the other for very opaque media. Nevertheless
such means are useful and have been calculated. In the specific case of
line effects, mentioned in the preceding paragraph, the contribution is
not very large until one reaches temperatures like 2 x 105 °k and high
densities.

Because of the many uncertainties entering the calculation of
absorption coefficients one has no systematic way of estimating their
accuracy. The responsible authors of opacity calculations are generally
confident that their results lie within a factor of three of the true values.

In the intermediate temperature range where the opacity reaches a
maximum,the accuracy is probably somewhat better. Because of the large
opacity the averaging procedures, which are appropriate for radiative
transfer calculations, put the most weight on those parts of the spectrum
where 4y, is small and very little weight on the lines. The Rosseland

mean does and the Planck mean does not fall into this class. Because of
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the emphasis on the cont.im.ium, where one has more reliable information,
the Rosseland mean is expected to be more accurate.

The extent to which opacity errors falsify fireball calculations
depends on the temperature range. Inspecting the temperature profiles
of Fig. 2-2 which are typical for the early stage of a‘fireball one finds
large temperatures near the center which makes the air in that region very
transparent. Further out the temperature drops so that the opacity rises,
goes through a maximum and then drops again. In the transparent central
region radiative heat transfer is rapid and keeps that region at a fairly
uniform temperatLire, as one sees in Fig. 2-2. Just how uniform this
profile is has very little effect on the rate of expansion and ’;herefore
opacity errors by a factor twice or even more are not serious in that region.

The-opaque zone around the central region acts as a radiative barrier
and the development of the fireball does depend quite critically on the opacity
there. During the very early phase where hydrodynamic motion is still
negligible compared{ to the radiative expansion the section of the opacity-
temperature relation near the maximum determines the rate of that expansion.
It also determines when and where the hydrodynamic shock begins to form.

When shock temperatures are still high, the opaque shell forms in
a temperature toe ahead of the shock. This is the precursor which has been
sketched in Fig. 2-7 and which causes the early structure in Fig. 2-1.
At this stage the opacity is still of interest, since it determines the
character of the escaping radiation and other observable phenomena, but
the rate at which the fireball expands is given by the shock speed which

does not depend on the opacity in the toe.
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The nexE phase starts when the shock temperature has dropped low
enough that the shocked air becomes opaque. This is aided by the high
density directly behind the shock which can be seen for example, in the
density profiles of Fig. 2-3. Up to that time radiative transfer plays a
major role in feeding energy to the expanding shock front. Now that
source fades ocut and hydrodynamics takes over as the dominant mechanism
for energy transfer. The details of the change depend quite critically
on the opacity relation.

Upon further cooling the shock front becomes transparent again
and the opaque shell recedes toward the center. This starts the long time
interval during which the power vs. time curve of Fig. 2-1 goes through its
minimum, rises back to the final maximum, and starts to drop again. The
calculation of this phase also depends quite critically on the opacity. A
test calculation made with an opacity twice the accepted value stretched
the total duration of this phase by almost a factor of two with a corresponding
reduction of the maximum power level to about half of what it was in the
earlier calculation. Thus, errors in the opécity relation could lead to fairly
severe discrepancies between fireball models at the time of the second

maximum.

3.3 Radiation hydrodynamics codes

The purely hydrodynamic part of any code is probably as accurate
as the equation of state that is being used except for the smearing out of
thé shock front introduced by the artificial viscosity method. The accuracy
of radiative transfer calculations is less certain, unless one is justified

in using the diffusion approximation. In that case the limiting factor is
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probably the accuracy of the opacity. Difficulties do arise, however, at
the front of an opaque shell. Consider, for example, two zones labeled

a and b whose temperatures place them on the rising branch of the
opacity curve as indicated in Fig. 3-1. As the heating wave progresses
these points move up on the curve. The radiation escaping to the outside
comes at first from zone a and passes without attenuation through zone
b . As zone a climbs higher the radiation rises as T4 but when zone
b becomes sufficiently opaque to take over the role of zone a the power
output drops. This cycle is repeated when zone ¢ and others after it
climb into the position originally held by zone a . The result of this is

a sequence of maxima and minima in the power versus time curve which

has no physical reality. This spurious effect can be counteracted by using
finer zone sizes but at the expense of increasing the running time which
increases as the square of the number of subdivisions per zone. Actually
this is not necessary, since test calculations sho‘w,that the cruder zone
divisions lead to the same average power and to the same rate of expansion
as a very fine division. A related problem arises when the artificial
viscosity routine introduces improper héating ahead of the shock front.
Letting the point a in Fig. 3-1 represént'the shocked zone and b and
c the zones just ahead of the shock, this heating would make points b
and c lie at too high tempera,tures. The calculated attenuation of the
radiation from the shock is therefore larger than what it should really be
and leads us to predict too low a brightness of the fireball. The reduced
output has, however, practically no effect on the calculated motion of the

fireball air because at that stage the amount of energy lost by radiation

is still too small to influence the hydrodynamics.
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Other errors may be introduced by the use of approximate integration
routines such as the multiple ray or the two stream techniques which have
been discussed in Chapter 1. Given a set of experimental data one can,
within limits, adjust the opacity temperature relation so that either model
will reproduce these data. It is therefore not really possible to disentangle
errors which may arise from the use of these models-; on the one hand, and

from incorrect absorption coefficients on the other hand.

3.4 Deviations from LTE

As we have repeatedly stated, nearly all calculations assume the air
to be always in LTE. There are, however, some equilibration processes which
are decidedly slow on the time scale of nuclear fireballs. At somewhat
elevated altitudes one finds for example, that the processes responsible

for populating the vibrationally excited levels of O and N2 fall into

2
this class. These processes are discussed under the heading "vibrational

relaxation" in (4) section 6.1 In the case of O, , populating the

2
‘ vibrational levels reduces the photon energy required for reaching the
Schumann-Runge continuum below the 8.5 eV which it takes from the ground
state. As long as these levels are not populated the actual absorption is
therefore less than it would be in equilibrium. Similar considerations apply
to the Birge-Hopfield transitions in N2 . In most codes these delays are
just ignored. Hillendahl (see Appendix A) has attempted to account for them
by means of a fairly crude model assumption.

Other deviations from LTE are caused by the slowness of chemical

reactions at temperatures, say, below 6OOOOK (see (4) sections 6.9

and 7.5) Among the molecules which can form in this temperature range is
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NO which has a large absorption coefficient. The delay in forming this

2
molecule when air is suddenly heated by a shock and the subsequent delay
in removing it again when the air cools down can change the absorption
significantly from the value at equilibrium conditions. If the temperature

drop is rapid enough the NO concentration may stay for a long time at

2
the high concentration corresponding to 3000°K even though the temperature

has dropped below‘ZOOOOK. In this situation one speaks of NO as being

2
frozen in.

Non-equilibrium processes also occur at the debris air interface. It
has been pointed out in (4) section 5.2 that this is very poorly understood.
It is, in particular, quite uncertain what temperature the shocked air
would reach and what X-ray specfrum would be emitted by that air,

The questions raised in this chapter clearly do not exhaust the subject
of possible errors in the present state of the art, It is, in fact, quite likely
that effects with more practical significance have been overlooked. Still,

this enumeration should provide the reader with some guidance what he

should watch.
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FIG. 3-1 LOCATION OF 3 ADJACENT ZONES
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Appendix A. A Radiation-Hydrodynamics Code

A.1 Introduction

In this appendix, a sample radiation-hydrodynamics code is
presented which employs, with %varying degrees of sophistication, much
of the physics and basic data presented elsewhere in this volume.

| In keeping with Chapter 2, this code describes the radiative and
hydrodynamic properties of a sphere of hot air. Details of the weapon
itself are not of intefest in the Present context, and rather crude
generalizations have been used to represent the gross properties of the
hardware.

The code is presented as é means of demonstrating some of the
techniques of radiation-hydrodynamics, as described in Chapter 1, the
application of basic physical data, as described in Volume 2 ,
and as an illustration of the results discussed in Chapter2 . The code
is not intended as a demonstration of the programming art and has not
been polished-up for presentation here. A great deal of the program
could be deleted were the program to be used only for present purposes.
Much of the basic philosophy of this code has been presented in Chapter 1
and by Hillendahl (1Q64), and will not be repeated in detail.

The basic equations of the problem are the conservation equations
of radiation-hydrodynamics for a one-dimensional spherical system

which can be written in Lagrangian form as

QLtI = - 4TTR2 -a—(Pa—:nQL Conservation of momentum a.l1
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where

v

at
= 2 3R
4nR 3m
2 2
p A
= o A .
C v l:at] on compression

0 otherwise

2
*(P*Q)¥*4TTM=O

dm

= E(V,T)
= P(V,T)

is an integral functional of V and

= local fluid velocity

= time

= radius

= pressure

= artificial viscosity

= mass

= an arbitrary constant near unity

= jnitial density
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Definition of velocity

Conservation of mass

Definition of Artificial
Viscosity

Conservation of energy

(A.2)

(A.3)

(A.4)



V = specific volume (reciprocal density)
= radiative net flux at R
E = internal energy

Quite generally, the mathematical formulation of the problem may be
characterized as an initial value problem whose solution consists of a
time-wise and mass-wise integration of a well defined set of hyperbolic
partial differential and partial integro-differential equations.

The solution of these equations is carried out by numerical techniques
in which values of the dependent variables are determined in terms of the
two independent variables (the time and lagrangian zone mass) by means of
finite difference equations which are used to represent Eqgs. (A.1) - (A.8).

For purposes of numerical computation, the fireball configuration is
represented by a series of concantric, contiguous, spherical mass shells.
The mass of the kth zone is designated by m, (gm/cm3). Since the mass
zones retain their identity thromlghout the time-wise development of the
configuration, the zone index k and the time t (seconds) are convenient
choices for the independent variables.

Integration of the set of 8 equations (Eqs. (A.1) - (A.8)) then deter-
mines the values of the 8 dependent variables as functions of k and t .
Uk,t) (cm sec 1) and R(k,t) (cm) are used to specify the instantaneous
values of the interface velocity and radius of the outer surface of the kth
mass shell. F(k,t) (ergs cm-2 sec 1) is used to specify the instantaneous
value of the net radiative flux at the outer boundary of the kth mass zone.
P(k,t) (dynes cm-z), Q(k,t) (dynes cm_z), vik,t) (cm3 gm_l), T(k,t)

(°K), Elk.t) (ergs gm 1) are used to represent the instantaneous values of
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the pressure, artificial viscous pressure, specific volume (reciprocal
density), temperature and internal energy of the mass zone m .

In a purely hydrodynamic problem without radiative transfer, it is
the standard practice to_reckon the thermodynamic properties of a zone
(i.e.: pressure, internal energy, density, temperature) as constant
average values over each zone. These values are also considered to
be the central values of these variables at the geometri cal zone centers.
Particle velocities are reckoned at the zone interfaces; the interface
density and pressure gradient are formulated in terms of the values at
the zone centers. The zoning mesh must be chosen fine enough so that
the variation in properties from zone to zone is small enough to insure
that these average values are meaningful.

In a problem which also includes radiative transfer, the above
restrictions must also be met. Zone sizes in a problem including radiation
will generally be smaller than the zone sizes required by hydrodynamics
alone. The addition of radiative transfer to the problem will, in general,
add further restrictions.

If the temperature is taken as constant across each zone, temperature
discontinuities will occur at the zone interfaces.- Radiative variables like

4 will have even greater discontinuities. More detailed examination

T
indicates that the temperature and its spatial derivatives should be
continuous at the zone interfaces. Thus, consistent with the expansion
used in Eq. (2.5-9), the source function B is taken as linear between
zone centers. Then the discontinuous spatial derivatives of the source

function which occur at the zone centers do not appear in the formulation.

In a more general formulation, a higher order polynomial could be used to
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fit the source function through the zone centers, but numerical experience
h;s indicated such a procedure resulted in only minor improvement in the
computations.

The central zone temperature T is used as the average over the
zone for purposes of computing average zone pressures, internal energies,
and is used also in the Z, A, and W computations (Eqs. (2.5-13)
through (2.5-15)). This is done primarily for purposes of convenience,
but can be at least partially justified. In regions of small temperature
gradient, no problem occurs since the central and average zone tempera-
tures are nearly identical. In regions of large temperature gradients, the
"average value" of the temperature is poorly defined in terms of the rapidly
varying radiative variables, and it is preferable to keep the problem well
poised hydrodynamically. '

The specific volume V is taken as having a linear variation
across eacﬁ zone. The values of V at the zone centers and zone
interfaces are then uniquely defined and afford no further difficulty.

The Z, A, and W functions are then computed using the average
zone temperature T and specific volume V . Use of the average
specific volume is justified since these functions show a relatively weak
density dependence. Neglecting the variations in temperature across
the zone causes only relatively small errors in the high temperature inner
fireball regions since these functions show only a weak dependence upor; '
temperature. In the low temperature regions, the 2, A, and W
functions vary about as the ninth power of the temperature. Even with
extremely fine zoning, large temperature gradients occur across each

zone, and the' Z, A, and W functions would be ill defined in terms
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of any average temperature no matter how the average be defined. But
the emission from these low temperature regions is small compared to
the emission from the high temperature regions further inside, and these
layers act primarily as a selective absorber for radiation from larger
optical depths. Hence the Z-E function must be known with some
accuracy, but small errors in thé A function, originating because of
the use of the average zone temperature, can be tolerated.

The Z+ function, however, has peculiar properties in the low
temperature region v;/hich allow its values to be obtained with sufficient
accuracy. As discussed in Chapter 8, the spectral absorption coefficient
varies extremely rapidly with wavelength so that the spectrum is effective.y
divided at some wavelength into absbrbed and transmitted fractions. This
transition wavelength, however, depends only weakly on the zone tempera-
ture, and hence the average zone ‘temperature will agailn suffice.

It shou;ld always be born in mind that these numerical approximations
all improve as the zone size is decreased and can, in principle be made
accurate to any desired precision. In practice, however, the fineness of
the zone mesh is limited by the cost of computation. Skill is thus required
to accomplish a large computational program within a limited budget. One
tries to test each situation for sensitivity to zone sizes and achieve a
compromise between economy of computation and accurate representation of
the physics.

For purposes of carrying out the integration procedure by numerical
methods, the basic equations (Egs. (A.1) - (A.8)) are replaced by a set

of centered finite difference equations as follows. The notation and
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centering can best be seen by reference to Fig. A-1.

2
nt1/2 _ .n-1/2 _ ( n) (n n-1/2_.n _ ~n-1/2
Yk Yk _ T8\Ry ) Brar/ot a1/ Pr-1/2" %170

= (a.9)
ot /2 _ (N 1/2 m + m .,
R;’ﬂ = RE + UL‘H/ 2 (1:“+1 - t“) | (A.10)
3 3
ntl - 4o ntl _ ntl :
Ye-172 T 3mg {(Rk ) (Rk-1>} ®.11)
2
2 f,ntl n
ntl c my V12 " Yk -1/2 ®.12)
-1/2 L on e12 ot _n .
k-1/2 " 'k-1/2/ \4n R B}
ntl - , ntl n
Q-172 = O 1 VoV
n¥l n ntl n ntl _ n
Be-1/2 ~ Be-1/o (Pr-rze® Prouze ont /2| k=172 Ve-1/2
ntl n 2 k-1/2A . ntl n
t -t t -t
(A.13)

2 N2 2 2
20 ntl n¥l f.n¥l ntl n n _ fyn n -
+mk (Rk )9k (Rk—l) Fp-1 ¢ (Rk> Iy (Rk—l) Fe-1( = O
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ntl = +1 ntl
E_1/2 E(VJIZ-I/Z, Tk-l/Z)

ntl = ntl ntl
P_1/2 P(Vk-l/z, Tk-l/z)

1 1

9E+1 =gk(vx_1+1 Tl.’l+]> i= 1, e s e s e e e e L

Eq. (A.9) expresses the conservation of momentum and is centered
over the grid point (n,k).

Eq. (A . 10) simply expresses the definition of velocity and is
centered over the grid point (n+1/2 ,k).

The conservation of mass, expressed by Eq. (A.11), is centered
over the grid point (n+1/2 ,k-1/2, i.e. over Q]r:f i;g .

The difference expression (Eq. (A.12)) for the artificial viscosity
is centered on the grid location (n+1/2 . k-1/2) except for the R]r:+1
factor. The artificial viscosity is thus correctly centered for use in the
energy Eq. (A.13), but lags a hélf time step behind in the equation of
motion (Eq. (A.9).

The energy equation (Eq. (A .13)) is centered over the grid location
(n+1/2 ,k-1/2) and constitutes an implicit expression to determine the
local temperature Tﬂti/z . |

Eqs. (A.14) and (A.15) are equations of condition rather than finite

difference equations, and express the equations of state for the fluid at

. _ . +1 ntl
the location (n+1, k-1/2) in terms of VI)Z_ 1/2 and T, _ 1/2
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(A. i4)

(A.15)
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Eq. (A.16), which is written above only in symbolic form, expresses
that the local net flux 92-” is an instantaneous integral functional of the
temperatures and densities of all of the L zones in the configuration. The
set of Eqs. (A.9) - (A.16) thus constitutes a set of 8L equations in 8L
unknowns.

The following set of 11 auxiliary equations are used to evaluate

Eq. (A.16):

20011/, = 20 Vﬁ:i/z' TR Ry .
ZIEH/Z =2 Vzti/z' Tgti/z' S

*Hﬁj/z =) Tyt

srpt =(RE - Rt

ntl _ _ a.n¥l
A_1/2 T exP|- ATy 1,9

nt+l nt+l 4

BC 12 T 9\ Tk-1,2
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(A.17)

(A.18)

(A.19)

(A. 20)

(A.21)

(A.22)



ntl ntl
nt 152 BCy_1/2 ~ BCr41/2
k-1/2 ntl n+l

n+l n¥l ntl

1
Wi-t2 1AL C AL 0T,

4 4
ntl _ -n¥l}{ n+l ntl . ntl){.ntl }
ntl _ ° [(Rkﬂ Ry ) (Tk-lL * (Rk Rk—LkaJr 1/2) |

BBk . Rn+1 _ Rn'i‘l
k+1 k-1
N+l 2 Lt 2
+ - + + - +
pOIh = pol? Y K1) zoltl 4 P[0 (KAL) | 2
R R
k k
n+1 n+l n+1 +1
+ - +
B (1-ATH o257 W
ntl _ nt+l n¥l ntl _antl) _ ,ontl ontl
FI, = = FL,y 2L, * BBy (1 Ak-l-l) 28 " Wi
ntl _ ntl _ ntl
5

where o = 5.67 x 10 ° is the Stephan-Boltzmann constant, and TR
the temperature used to specify the spectral character of the radiation

incident upon the zone from regions of smaller radius.
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(A.23)

(A.24)

(A.25)

(A.26)

(a.27)

(A.28)



The analytic expressions for Eqs. (A.18) and (A.19) are not given
explicitly in the written text, but are available in the FIREBALL code
listing which follows.

In carrying out the numeri’cal integration scheme, it is assumed
that the initial values of R, T, V, E, P, U, Q, and # are known at
the initial time " for all values of k . The difference equations
(Eqs. (A.9) - (A.28)) are then used to determine values for these variables

.E
ntl o t? + At  for all values of k . The procedure is repeated as

at t
n 1is increased until the desired period of time has been covered by the
integration.

The initial values of Q and U are chosen at t"  rather than
tn_l/2 in the above procedure, but little error is introduced since the
 initial values may be adjusted accordingly and the time step At may be
chosen as very small on the initial cycle.

The actual input model consists of asetof R, U, T, and V
values for each zone of the configuration. Initial values of Q, E, P,

Q, and # are then found by use of Egs. (A.12), (A.14), (A.15), and
(A. 16) before starting the first time cycle.

The set of Eqs. (A.9) through (A.12) depend only on the localized
properties of the fluid and they can be advanced explicitly in space and
time, subject to the limitations on the time increments according to the
Courant criterion (see Chapter2).

The set of Eqs. (A.13) through (A.28) must be solved simultaneously

for all of the L =zones in the configuration because of the linkage between

distant zones caused by the radiative flux. Since the advanced values
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..|.
E_ 1/2 of the specific volumes are known by advancing Eq. (A.11)

Vv
. , n+1l .
explicitly, a set of trial temperatures Ti-l/Z’ i=1, ... L are
estimated, substituted into the Eqs. (A.13) - (A.28), and a Newton-
Raphson iteration scheme is then used to adjust the estimated values
of temperature until Eq. (A.13) is satisfied to a predetermined accuracy.
The iteration is carried out by numerical methods. The equation

of state derivatives, at fixed V , are carried out by raising and lowering

the temperature 2% from its trial value, e.g.:

AE _ E(V, 1.02T) - E{v, 0.98T)
AT 1.02T - 0.98T

(A.29

~—

The derivatives of the radiative quantities are computed by a
ripple zone technique in which the temperature of a single zone is raised
2%, the set of Egqs. (A.17) - (A.28) is evaluated and the desired derivatives
formed, and the displaced temperature is then returned to its undisplaced
value. This procedure is repeated for each zone in the configuration until
all the desired derivatives are available. In practice, radiative derivatives
for zones more than 2 zones distant are small, so that only a 5 zone set ¢f
derivatives is carried. Neglect of the more distant derivatives does not
constitute a neglect of radiative transfer between distant zones; their
neglect only influences rate of convergence of the iteration procedure.

For a system of L =zones, the iteration procedure then results in L
linear algebraic equations in L unknown temperature increments, each
equation consisting of a set of terms involving 5 of the unknowns. This
array is then solved by direct elimination and back substitution. The

temperature increments are then used to adjust the trial values of
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temperature until all temperature increments for all zones are simul-
taneously less than 10% of their respective zone temperatures.

The FIREBALL code is written in a programming language called
FORTRAN; the particular v'intage is known as FORTRAN II, Version 2.

The various types of FORTRAN currently in use differ from each other

only in minor details. This particular version was selected primarily
because it has been in use for a number of years, and has achieved a
measure of stability and reliability not to be found in the more recent
efforts of the computer industry.

The FORTRAN language little resembles the machine language coding
of a decade ago, and its resemblance to ordinary algebra is so close that
the average physicist or engineer can learn to read FORTRAN with a very
minimum of effort. This allows one to communicate the solution of a
complicated theoretical calculation to his fellow scientists in complete
detail and\ complete scientific honesty.

Section A.2 is devoted to a brief discussion of how to read FORTRAN
and is designed for the scientist who is not familiar with this type of
language. The remainder of Appendix A is devoted to the scientific aspects
of the FIREBALL code and is intended to be independent of the language details.
Readers not interested in great detail may thus skip over Section A.2, while
those interested in such detail will find this section helpful in reading the
code itself which is listed in full. The four digit numbers which appear in
parenthesis throughout‘this appendix, e.g. (0 136), refer to serial numbers

(line numbers) in the code listing.
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A.2 Reading FORTRAN

Variables and Constants

Algebraic variables are represented by symbols as in ordinary algebra

38 to £ 1.7 x 10{_38 , and

and may take on values from about + 1.7 x 10~
zero. Arithmetic is accurate to 8 significant figures.
Variable names must consist of 1 to 6 characters, the first of which

must be a letter of the alphabet other than I, J,